Zum Hauptinhalt springen

MET exon 14 skipping mutation drives cancer progression and recurrence via activation of SMAD2 signalling.

Liang, Q ; Hu, Y ; et al.
In: British journal of cancer, Jg. 130 (2024-02-01), Heft 3, S. 380-393
Online academicJournal

Titel:
MET exon 14 skipping mutation drives cancer progression and recurrence via activation of SMAD2 signalling.
Autor/in / Beteiligte Person: Liang, Q ; Hu, Y ; Yuan, Q ; Yu, M ; Wang, H ; Zhao, B
Link:
Zeitschrift: British journal of cancer, Jg. 130 (2024-02-01), Heft 3, S. 380-393
Veröffentlichung: 2002- : London : Nature Publishing Group on behalf of Cancer Research UK ; <i>Original Publication</i>: London, Lewis., 2024
Medientyp: academicJournal
ISSN: 1532-1827 (electronic)
DOI: 10.1038/s41416-023-02495-5
Schlagwort:
  • Humans
  • Exons genetics
  • Mutation
  • Phosphorylation
  • Smad2 Protein genetics
  • Smad2 Protein metabolism
  • Transcription Factors genetics
  • Transforming Growth Factor beta genetics
  • Transforming Growth Factor beta metabolism
  • Neoplasms genetics
  • Proto-Oncogene Proteins c-met genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Br J Cancer] 2024 Feb; Vol. 130 (3), pp. 380-393. <i>Date of Electronic Publication: </i>2023 Dec 18.
  • MeSH Terms: Neoplasms* / genetics ; Proto-Oncogene Proteins c-met* / genetics ; Humans ; Exons / genetics ; Mutation ; Phosphorylation ; Smad2 Protein / genetics ; Smad2 Protein / metabolism ; Transcription Factors / genetics ; Transforming Growth Factor beta / genetics ; Transforming Growth Factor beta / metabolism
  • References: Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33. (PMID: 659096710.1038/311029a0) ; Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12:15–26. (PMID: 2779450110.1016/j.jtho.2016.10.014) ; Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103. (PMID: 2227095310.1038/nrc3205) ; Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18:165. (PMID: 31747941686497010.1186/s12943-019-1073-4) ; Hughes VS, Siemann DW. Have clinical trials properly assessed c-Met inhibitors? Trends Cancer. 2018;4:94–7. (PMID: 29458966582443610.1016/j.trecan.2017.11.009) ; Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29:i10–9. (PMID: 29462254645454710.1093/annonc/mdx703) ; Cortot AB, Kherrouche Z, Descarpentries C, Wislez M, Baldacci S, Furlan A, et al. Exon 14 deleted MET receptor as a new biomarker and target in cancers. J Natl Cancer Inst. 2017;109. ; Lee CC, Yamada KM. Identification of a novel type of alternative splicing of a tyrosine kinase receptor. Juxtamembrane deletion of the c-met protein kinase C serine phosphorylation regulatory site. J Biol Chem. 1994;269:19457–61. (PMID: 751845710.1016/S0021-9258(17)32190-7) ; Lee JH, Gao CF, Lee CC, Kim MD, Vande Woude GF. An alternatively spliced form of Met receptor is tumorigenic. Exp Mol Med. 2006;38:565–73. (PMID: 1707987310.1038/emm.2006.66) ; Lee JM, Kim B, Lee SB, Jeong Y, Oh YM, Song YJ, et al. Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody. Oncogene. 2014;33:34–43. (PMID: 2320850910.1038/onc.2012.551) ; Socinski MA, Pennell NA, Davies KD. MET exon 14 skipping mutations in non-small-cell lung cancer: an overview of biology, clinical outcomes, and testing considerations. JCO Precis Oncol. 2021;5:PO.20.00516. ; Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9. (PMID: 2597193810.1158/2159-8290.CD-15-0285) ; Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63:6272–81. (PMID: 14559814) ; Heist RS, Sequist LV, Borger D, Gainor JF, Arellano RS, Le LP, et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol. 2016;11:1242–5. (PMID: 2734344210.1016/j.jtho.2016.06.013) ; Cancer Genome Atlas Research Network. Author Correction: Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2018;559:E12. (PMID: 10.1038/s41586-018-0228-6) ; Tong JH, Yeung SF, Chan AW, Chung LY, Chau SL, Lung RW, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22:3048–56. (PMID: 2684705310.1158/1078-0432.CCR-15-2061) ; Rotow JK, Gui P, Wu W, Raymond VM, Lanman RB, Kaye FJ, et al. Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin Cancer Res. 2020;26:439–49. (PMID: 3154834310.1158/1078-0432.CCR-19-1667) ; Suzawa K, Offin M, Lu D, Kurzatkowski C, Vojnic M, Smith RS, et al. Activation of KRAS mediates resistance to targeted therapy in MET exon 14-mutant non-small cell lung cancer. Clin Cancer Res. 2019;25:1248–60. (PMID: 3035290210.1158/1078-0432.CCR-18-1640) ; Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, et al. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non-small cell lung cancer. Clin Cancer Res. 2018;24:5963–76. (PMID: 30072474627956810.1158/1078-0432.CCR-18-0876) ; Drilon A, Clark JW, Weiss J, Ou SI, Camidge DR, Solomon BJ, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26:47–51. (PMID: 31932802850067610.1038/s41591-019-0716-8) ; Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, et al. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). J Clin Oncol. 2020;38:9519. (PMID: 10.1200/JCO.2020.38.15_suppl.9519) ; French R, Feng Y, Pauklin S. Targeting TGFbeta signalling in cancer: toward context-specific strategies. Trends Cancer. 2020;6:538–40. (PMID: 3227868510.1016/j.trecan.2020.03.010) ; Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. (PMID: 1280960010.1016/S0092-8674(03)00432-X) ; Loomans HA, Andl CD. Intertwining of activin A and TGFbeta signaling: dual roles in cancer progression and cancer cell invasion. Cancers (Basel). 2014;7:70–91. (PMID: 2556092110.3390/cancers7010070) ; Zhong G, Zhao Q, Chen Z, Yao T. TGF-beta signaling promotes cervical cancer metastasis via CDR1as. Mol Cancer. 2023;22:66. (PMID: 370040671006458410.1186/s12943-023-01743-9) ; Zhang J, van Dinther M, Thorikay M, Gourabi BM, Kruithof BPT, Ten Dijke P. Opposing USP19 splice variants in TGF-beta signaling and TGF-beta-induced epithelial-mesenchymal transition of breast cancer cells. Cell Mol Life Sci. 2023;80:43. (PMID: 36646950984259110.1007/s00018-022-04672-w) ; Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol. 2008;18:12–22. (PMID: 1792823410.1016/j.semcancer.2007.08.001) ; Izdebska M, Zielinska W, Grzanka D, Gagat M. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets. Biomed Res Int. 2018;2018:4578373. (PMID: 29581975582276710.1155/2018/4578373) ; Mukai M, Sato S, Kimura T, Komatsu N, Ninomiya H, Nakasaki H, et al. Predicting the recurrence/metastasis of stage II and III breast cancer with lymph node metastasis. Oncol Rep. 2004;12:303–6. (PMID: 15254693) ; Wang F, Liu Y, Qiu W, Shum E, Feng M, Zhao D, et al. Functional analysis of MET exon 14 skipping alteration in cancer invasion and metastatic dissemination. Cancer Res. 2022;82:1365–79. (PMID: 3507881910.1158/0008-5472.CAN-21-1327) ; Hao Y, Baker D, Ten Dijke P. TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019;20:2767. ; Buwaneka P, Ralko A, Gorai S, Pham H, Cho W. Phosphoinositide-binding activity of Smad2 is essential for its function in TGF-beta signaling. J Biol Chem. 2021;297:101303. (PMID: 34655614856720210.1016/j.jbc.2021.101303) ; Collie GW, Koh CM, O’Neill DJ, Stubbs CJ, Khurana P, Eddershaw A, et al. Structural and molecular insight into resistance mechanisms of first generation cMET inhibitors. ACS Med Chem Lett. 2019;10:1322–7. (PMID: 31531204674608210.1021/acsmedchemlett.9b00276) ; Desai A, Cuellar S. The current landscape for METex14 skipping mutations in non-small cell lung cancer. J Adv Pract Oncol. 2022;13:539–44. (PMID: 35910499932845710.6004/jadpro.2022.13.5.8) ; Peschard P, Park M. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell. 2003;3:519–23. (PMID: 1284208010.1016/S1535-6108(03)00136-3) ; Hong L, Zhang J, Heymach J V, Le X. Current and future treatment options for MET exon 14 skipping alterations in non-small cell lung cancer. Ther Adv Med Oncol. 2021;13:1758835921992976. (PMID: 33643443789071910.1177/1758835921992976) ; Cortot A, Le X, Smit E, Viteri S, Kato T, Sakai H, et al. Safety of MET tyrosine kinase inhibitors in patients with MET exon 14 skipping non-small cell lung cancer: a clinical review. Clin Lung Cancer. 2022;23:195–207. (PMID: 3527295510.1016/j.cllc.2022.01.003) ; Wolf J, Garon EB, Groen HJM, Tan DSW, Gilloteau I, Le Mouhaer S, et al. Patient-reported outcomes in capmatinib-treated patients with METex14-mutated advanced NSCLC: results from the GEOMETRY mono-1 study. Eur J Cancer. 2022;183:98–108. (PMID: 3682213010.1016/j.ejca.2022.10.030) ; Babey H, Jamme P, Curcio H, Assie JB, Veillon R, Doubre H, et al. Real-world treatment outcomes of MET exon14 skipping in non-small cell lung cancer: GFPC 03-18 study. Target Oncol. 2023;18:585–91. (PMID: 3731066010.1007/s11523-023-00976-4) ; Yan SB, Um SL, Peek VL, Stephens JR, Zeng W, Konicek BW, et al. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or in combination in a cancer model bearing MET exon 14 skipping. Invest New Drugs. 2018;36:536–44. (PMID: 2918846910.1007/s10637-017-0545-x) ; Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15:3740–50. (PMID: 19470725315951110.1158/1078-0432.CCR-08-3252) ; Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer. 2005;113:678–82. (PMID: 1545538810.1002/ijc.20598) ; Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13:827–37. (PMID: 2164298110.1038/ncb2257) ; Li X, Wu Y, Tian T. TGF-beta signaling in metastatic colorectal cancer (mCRC): from underlying mechanism to potential applications in clinical development. Int J Mol Sci. 2022;23:14436. ; Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963–72. (PMID: 24168186400476310.2174/15680096113136660102) ; Bakiri L, Macho-Maschler S, Custic I, Niemiec J, Guio-Carrion A, Hasenfuss SC, et al. Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFbeta expression. Cell Death Differ. 2015;22:336–50. (PMID: 2530107010.1038/cdd.2014.157) ; Zhou H, Li L, Xie W, Wu L, Lin Y, He X. TAGLN and High-mobility Group AT-Hook 2 (HMGA2) complex regulates TGF-beta-induced colorectal cancer metastasis. Onco Targets Ther. 2020;13:10489–98. (PMID: 33116628757331510.2147/OTT.S263090) ; Zhu S, Wang W, Clarke DC, Liu X. Activation of Mps1 promotes transforming growth factor-beta-independent Smad signaling. J Biol Chem. 2007;282:18327–38. (PMID: 1745232510.1074/jbc.M700636200) ; Pilotto S, Gkountakos A, Carbognin L, Scarpa A, Tortora G, Bria E. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Ann Transl Med. 2017;5:2. (PMID: 28164087525329610.21037/atm.2016.12.33) ; Salgia R, Sattler M, Scheele J, Stroh C, Felip E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat Rev. 2020;87:102022. (PMID: 3233424010.1016/j.ctrv.2020.102022) ; Kang J, Deng QM, Feng W, Chen ZH, Su JW, Chen HJ, et al. Response and acquired resistance to MET inhibitors in de novo MET fusion-positive advanced non-small cell lung cancer. Lung Cancer. 2023;178:66–74. (PMID: 3680689610.1016/j.lungcan.2023.01.017)
  • Grant Information: 82273293 National Natural Science Foundation of China (National Science Foundation of China)
  • Substance Nomenclature: EC 2.7.10.1 (Proto-Oncogene Proteins c-met) ; 0 (Smad2 Protein) ; 0 (SMAD2 protein, human) ; 0 (Transcription Factors) ; 0 (Transforming Growth Factor beta) ; EC 2.7.10.1 (MET protein, human)
  • Entry Date(s): Date Created: 20231219 Date Completed: 20240213 Latest Revision: 20240305
  • Update Code: 20240305
  • PubMed Central ID: PMC10844616

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -