Zum Hauptinhalt springen

Clarifying the correlations between hydraulic indicators evaluating the hydraulic performance of free water surface constructed wetlands.

Wan, D ; Li, Y ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-02-01), Heft 7, S. 10673-10688
Online academicJournal

Titel:
Clarifying the correlations between hydraulic indicators evaluating the hydraulic performance of free water surface constructed wetlands.
Autor/in / Beteiligte Person: Wan, D ; Li, Y ; Zhu, Q ; Cui, Y ; Shu, Y ; Guo, C
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-02-01), Heft 7, S. 10673-10688
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-023-31229-6
Schlagwort:
  • Waste Disposal, Fluid methods
  • Water
  • Plants
  • Wetlands
  • Water Purification methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Feb; Vol. 31 (7), pp. 10673-10688. <i>Date of Electronic Publication: </i>2024 Jan 11.
  • MeSH Terms: Wetlands* ; Water Purification* / methods ; Waste Disposal, Fluid / methods ; Water ; Plants
  • References: Adhikari U, Harrigan T, Reinhold DM (2015) Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecol Eng 78:6–14. https://doi.org/10.1016/j.ecoleng.2014.05.024. (PMID: 10.1016/j.ecoleng.2014.05.024) ; Bai Y, Zhang S, Mu E et al (2023) Characterizing the spatiotemporal distribution of dissolved organic matter (DOM) in the Yongding River Basin: insights from flow regulation. J Environ Manage 325:116476. https://doi.org/10.1016/j.jenvman.2022.116476. (PMID: 10.1016/j.jenvman.2022.11647636323113) ; Bodin H, Mietto A, Ehde PM et al (2012) Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands. Ecol Eng 49:201–211. https://doi.org/10.1016/j.ecoleng.2012.07.009. (PMID: 10.1016/j.ecoleng.2012.07.009) ; Bodin H, Persson J (2012) Hydraulic performance of small free water surface constructed wetlands treating sugar factory effluent in western Kenya. Hydrol Res 43:476–488. https://doi.org/10.2166/nh.2012.133. (PMID: 10.2166/nh.2012.133) ; Bodin H, Persson J, Englund JE, Milberg P (2013) Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal. J Hydrol 501:1–12. https://doi.org/10.1016/j.jhydrol.2013.07.022. (PMID: 10.1016/j.jhydrol.2013.07.022) ; Chang TJ, Chang YS, Lee WT, Shih SS (2016) Flow uniformity and hydraulic efficiency improvement of deep-water constructed wetlands. Ecol Eng 92:28–36. https://doi.org/10.1016/j.ecoleng.2016.03.028. (PMID: 10.1016/j.ecoleng.2016.03.028) ; de Palaminy L, Daher C, Moulherat C (2022) Development of a non-destructive methodology using ATR-FTIR and chemometrics to discriminate wild silk species in heritage collections. Spectrochim Acta - Part A Mol Biomol Spectrosc 270:120788. https://doi.org/10.1016/j.saa.2021.120788. (PMID: 10.1016/j.saa.2021.120788) ; Guo C, Wan D, Li Y et al (2023) Quantitative prediction of the hydraulic performance of free water surface constructed wetlands by integrating numerical simulation and machine learning. J Environ Manage 337:117745. https://doi.org/10.1016/j.jenvman.2023.117745. (PMID: 10.1016/j.jenvman.2023.11774536965370) ; Guo CQ, Cui YL (2021) Improved solute transport and pollutant degradation model of free water surface constructed wetlands considering significant linear correlation between model parameters. Bioresour Technol 327:124817. https://doi.org/10.1016/j.biortech.2021.124817. (PMID: 10.1016/j.biortech.2021.12481733578355) ; Guo CQ, Cui YL, Dong B et al (2017a) Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresour Technol 238:461–471. https://doi.org/10.1016/j.biortech.2017.03.163. (PMID: 10.1016/j.biortech.2017.03.16328475988) ; Guo CQ, Cui YL, Dong B, Liu FP (2017b) Tracer study of the hydraulic performance of constructed wetlands planted with three different aquatic plant species. Ecol Eng 102:433–442. https://doi.org/10.1016/j.ecoleng.2017.02.040. (PMID: 10.1016/j.ecoleng.2017.02.040) ; Guo CQ, Cui YL, Shi YZ et al (2019) Improved test to determine design parameters for optimization of free surface flow constructed wetlands. Bioresour Technol 280:199–212. https://doi.org/10.1016/j.biortech.2019.02.020. (PMID: 10.1016/j.biortech.2019.02.02030772633) ; Guo CQ, Dong B, Liu JJ, Liu FP (2015) The best indicator of hydraulic short-circuiting and mixing of constructed wetlands. Water Pract Technol 10:505–516. https://doi.org/10.2166/wpt.2015.058. (PMID: 10.2166/wpt.2015.058) ; Holland JF, Martin JF, Granata T et al (2004) Effects of wetland depth and flow rate on residence time distribution characteristics. Ecol Eng 23:189–203. https://doi.org/10.1016/j.ecoleng.2004.09.003. (PMID: 10.1016/j.ecoleng.2004.09.003) ; Ioannidou VG, Pearson JM (2018) Hydraulic and design parameters in full-scale constructed wetlands and treatment units: six case studies. Environ Process 5:5–22. https://doi.org/10.1007/s40710-018-0313-8. (PMID: 10.1007/s40710-018-0313-8) ; Kadlec RH (1994) Detention and mixing in free water wetlands. Ecol Eng 3:345–380. https://doi.org/10.1016/0925-8574(94)00007-7. (PMID: 10.1016/0925-8574(94)00007-7) ; Kusin FM, Jarvis AP, Gandy CJ (2012) Hydraulic performance assessment of passive coal mine water treatment systems in the UK. Ecol Eng 49:233–243. https://doi.org/10.1016/j.ecoleng.2012.08.008. (PMID: 10.1016/j.ecoleng.2012.08.008) ; Li D, Chu Z, Zeng Z et al (2021) Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands. Sci Total Environ 797:148989. https://doi.org/10.1016/j.scitotenv.2021.148989. (PMID: 10.1016/j.scitotenv.2021.14898934351277) ; Liu J, Dong B, Zhou W, Qian Z (2020) Optimal selection of hydraulic indexes with classical test theory to compare hydraulic performance of constructed wetlands. Ecol Eng 143:105687. https://doi.org/10.1016/j.ecoleng.2019.105687. (PMID: 10.1016/j.ecoleng.2019.105687) ; Liu JJ, Dong B, Guo CQ et al (2016) Variations of effective volume and removal rate under different water levels of constructed wetland. Ecol Eng 95:652–664. https://doi.org/10.1016/j.ecoleng.2016.06.122. (PMID: 10.1016/j.ecoleng.2016.06.122) ; Ma Z, Cui YL, Guo CQ et al (2020) Consistency analysis of the optimal combination of free water surface constructed wetland design optimization over different seasons. Ecol Eng 155:105928. https://doi.org/10.1016/j.ecoleng.2020.105928. (PMID: 10.1016/j.ecoleng.2020.105928) ; Morrill AB, Dean JB, Orton JW, Ellms JW (1932) Sedimentation Basin Research and Design 24:1442–1463. ; Patel RP, Singh R, Saikia SK et al (2015) Phenotypic characterization and stability analysis for biomass and essential oil yields of fifteen genotypes of five Ocimum species. Ind Crops Prod 77:21–29. https://doi.org/10.1016/j.indcrop.2015.08.043. (PMID: 10.1016/j.indcrop.2015.08.043) ; Persson J (2000) The hydraulic performance of ponds of various layouts. Urban Water 2:243–250. https://doi.org/10.1016/s1462-0758(00)00059-5. (PMID: 10.1016/s1462-0758(00)00059-5) ; Persson J, Somes NLG, Wong THF (1999) Hydraulics efficiency of constructed wetlands and ponds. Water Sci Technol 40:291–300. https://doi.org/10.2166/wst.1999.0174. (PMID: 10.2166/wst.1999.0174) ; Persson J, Wittgren HB (2003) How hydrological and hydraulic conditions affect performance of ponds. Ecol Eng 21:259–269. https://doi.org/10.1016/j.ecoleng.2003.12.004. (PMID: 10.1016/j.ecoleng.2003.12.004) ; Qi W-K, Guo Y-L, Xue M, Li Y-Y (2013) Hydraulic analysis of an upflow sand filter: tracer experiments, mathematical model and CFD computation. Chem Eng Sci 104:460–472. https://doi.org/10.1016/j.ces.2013.09.035. (PMID: 10.1016/j.ces.2013.09.035) ; Shih SS, Kuo PH, Fang WT, LePage BA (2013) A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling. Ecol Eng 61:200–206. https://doi.org/10.1016/j.ecoleng.2013.09.054. (PMID: 10.1016/j.ecoleng.2013.09.054) ; Shih SS, Wang HC (2020) Flow uniformity metrics for quantifying the hydraulic and treatment performance of constructed wetlands. Ecol Eng 155:105942. https://doi.org/10.1016/j.ecoleng.2020.105942. (PMID: 10.1016/j.ecoleng.2020.105942) ; Shuai X, Dai T, Chen M et al (2022) Characterization of lipid compositions, minor components and antioxidant capacities in macadamia (Macadamia integrifolia) oil from four major areas in China. Food Biosci 50:102009. https://doi.org/10.1016/j.fbio.2022.102009. (PMID: 10.1016/j.fbio.2022.102009) ; Su TM, Yang SC, Shih SS, Lee HY (2009) Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecol Eng 35:1200–1207. https://doi.org/10.1016/j.ecoleng.2009.03.024. (PMID: 10.1016/j.ecoleng.2009.03.024) ; Tao Y, An L, Xiao F et al (2022) Integration of embryo–endosperm interaction into a holistic and dynamic picture of seed development using a rice mutant with notched-belly kernels. Crop J 10:729–742. https://doi.org/10.1016/j.cj.2021.10.007. (PMID: 10.1016/j.cj.2021.10.007) ; Teixeira EC, do Nascimento Siqueira R (2008) Performance assessment of hydraulic efficiency indexes. J Environ Eng 134:851–859. https://doi.org/10.1061/(asce)0733-9372(2008)134:10(851). ; Teixeira EC, Siqueira R do N, Morgan-Sagastume JM, et al (1999) Alternative index for interpretation of RTD curves. J Environ Eng 125:290–294. https://doi.org/10.1061/(asce)0733-9372(2000)126:10(980). ; Thackston EL, Shields FD, Schroeder PR (1987) Residence time distributions of shallow basins. J Environ Eng 113:1319–1332. https://doi.org/10.1061/(asce)0733-9372(1987)113:6(1319). (PMID: 10.1061/(asce)0733-9372(1987)113:6(1319)) ; Thumanu K, Tanthanuch W, Lorthongpanich C et al (2009) FTIR microspectroscopic imaging as a new tool to distinguish chemical composition of mouse blastocyst. J Mol Struct 933:104–111. https://doi.org/10.1016/j.molstruc.2009.06.003. (PMID: 10.1016/j.molstruc.2009.06.003) ; Vymazal J, Brezinova TD (2018) Treatment of a small stream impacted by agricultural drainage in a semi-constructed wetland. Sci Total Environ 643:52–62. https://doi.org/10.1016/j.scitotenv.2018.06.148. (PMID: 10.1016/j.scitotenv.2018.06.14829936169) ; Wahl MD, Brown LC, Soboyejo AO et al (2010) Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecol Eng 36:1691–1699. https://doi.org/10.1016/j.ecoleng.2010.07.014. (PMID: 10.1016/j.ecoleng.2010.07.014) ; Walker DJ (1998) Modelling residence time in stormwater ponds. Ecol Eng 10:247–262. https://doi.org/10.1016/S0925-8574(98)00016-0. (PMID: 10.1016/S0925-8574(98)00016-0) ; Wan D, Cui Y, Guo C, Ma Z (2019) Appropriate design for obstruction length-to-wetland length ratio in free-water-surface constructed wetlands based on environmental fluid dynamics code. Nongye Gongcheng Xuebao/Transactions Chinese Soc Agric Eng 35:. https://doi.org/10.11975/j.issn.1002-6819.2019.18.008. ; Xia W, Zhu B, Zhang S et al (2022) Climate, hydrology, and human disturbance drive long-term (1988–2018) macrophyte patterns in water diversion lakes. J Environ Manage 319:115726. https://doi.org/10.1016/j.jenvman.2022.115726. (PMID: 10.1016/j.jenvman.2022.11572635849931) ; Zahraeifard V, Deng Z (2011) Hydraulic residence time computation for constructed wetland design. Ecol Eng 37:2087–2091. https://doi.org/10.1016/j.ecoleng.2011.08.011. (PMID: 10.1016/j.ecoleng.2011.08.011)
  • Grant Information: U2040213 National Natural Science Foundation of China; 42201091 National Natural Science Foundation of China; CKWV2021891/KY Changjiang River Scientific Research Institute; 2022M713233 Postdoctoral Research Foundation of China; 2022ZB451 Jiangsu Funding Program for Excellent Postdoctoral Talent (CN)
  • Contributed Indexing: Keywords: Design parameter; Dimensionality reduction; Evaluation index; Hydraulic performance; Mathematical reasoning; Optimal index selection; Significant correlation
  • Substance Nomenclature: 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20240110 Date Completed: 20240208 Latest Revision: 20240208
  • Update Code: 20240208

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -