Zum Hauptinhalt springen

Interdigitated impedimetric-based Maackia amurensis lectin biosensor for prostate cancer biomarker.

Rahman, SFA ; Arshad, MKM ; et al.
In: Mikrochimica acta, Jg. 191 (2024-01-31), Heft 2, S. 118
Online academicJournal

Titel:
Interdigitated impedimetric-based Maackia amurensis lectin biosensor for prostate cancer biomarker.
Autor/in / Beteiligte Person: Rahman, SFA ; Arshad, MKM ; Gopinath, SCB ; Fathil, MFM ; Sarry, F ; Ibau, C ; Elmazria, O ; Hage-Ali, S
Link:
Zeitschrift: Mikrochimica acta, Jg. 191 (2024-01-31), Heft 2, S. 118
Veröffentlichung: Wien ; New York : Springer-Verlag., 2024
Medientyp: academicJournal
ISSN: 1436-5073 (electronic)
DOI: 10.1007/s00604-024-06189-4
Schlagwort:
  • Male
  • Humans
  • Lectins chemistry
  • Biomarkers, Tumor
  • Prostate-Specific Antigen
  • Maackia metabolism
  • Prostate metabolism
  • Prostatic Neoplasms diagnosis
  • Biosensing Techniques methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Mikrochim Acta] 2024 Jan 31; Vol. 191 (2), pp. 118. <i>Date of Electronic Publication: </i>2024 Jan 31.
  • MeSH Terms: Prostatic Neoplasms* / diagnosis ; Biosensing Techniques* / methods ; Male ; Humans ; Lectins / chemistry ; Biomarkers, Tumor ; Prostate-Specific Antigen ; Maackia / metabolism ; Prostate / metabolism
  • References: Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R et al (2020) Electrochemical aptasensors for cancer diagnosis in biological fluids – A review. Anal Chim Acta 1124:1–19. https://doi.org/10.1016/j.aca.2020.04.022. (PMID: 10.1016/j.aca.2020.04.02232534661) ; Kirwan A, Utratna M, O’Dwyer ME et al (2015) Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int 2015. https://doi.org/10.1155/2015/490531. ; Rawla P (2019) Epidemiology of Prostate Cancer. World J Oncol 10:63–89. (PMID: 10.14740/wjon1191310689886497009) ; Drake RR, Jones EE, Powers TW, Nyalwidhe JO (2015) Altered glycosylation in prostate cancer, 1st ed. Elsevier Inc. ; Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8:268–278. (PMID: 10.1038/nrc235118337732) ; Gilgunn S, Conroy PJ, Saldova R et al (2013) Aberrant PSA glycosylation - a sweet predictor of prostate cancer. Nat Rev Urol 10:99–107. (PMID: 10.1038/nrurol.2012.25823318363) ; Belick S, Katrl J (2016) Glycan and lectin biosensors ˇ. Essays Biochem 60:37–47. https://doi.org/10.1042/EBC20150005. (PMID: 10.1042/EBC20150005) ; Belický Š, Tkac J (2014) Can glycoprofiling be helpful in detecting prostate cancer? Chem Pap 69:90–111. https://doi.org/10.1515/chempap-2015-0052.Can. (PMID: 10.1515/chempap-2015-0052.Can) ; Scott E, Munkley J (2019) Glycans as biomarkers in prostate cancer. Int J Mol Sci 20:1389. (PMID: 10.3390/ijms20061389308939366470778) ; Pearce OMT, Läubli H (2015) Sialic acids in cancer biology and immunity. Glycobiology 26:111–128. https://doi.org/10.1093/glycob/cwv097. (PMID: 10.1093/glycob/cwv09726518624) ; Hernández-Arteaga AC, de Jesús Z-NJ, Martínez-Martínez MU et al (2019) Determination of salivary sialic acid through nanotechnology: a useful biomarker for the screening of breast cancer. Arch Med Res 50:105–110. https://doi.org/10.1016/j.arcmed.2019.05.013. (PMID: 10.1016/j.arcmed.2019.05.01331495386) ; Berghuis AY, Pijnenborg JFA, Boltje TJ, Pijnenborg JMA (2022) Sialic acids in gynecological cancer development and progression: Impact on diagnosis and treatment. Int J Cancer 150:678–687. https://doi.org/10.1002/ijc.33866. (PMID: 10.1002/ijc.3386634741527) ; Elgohary MM, Helmy MW, Abdelfattah EZA et al (2018) Targeting sialic acid residues on lung cancer cells by inhalable boronic acid-decorated albumin nanocomposites for combined chemo/herbal therapy. J Control Release 285:230–243. https://doi.org/10.1016/j.jconrel.2018.07.014. (PMID: 10.1016/j.jconrel.2018.07.01430009892) ; Pihikova D, Pakanova Z, Nemcovic M et al (2016) Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 16:3085–3095. https://doi.org/10.1002/pmic.201500463. (PMID: 10.1002/pmic.201500463269203365659381) ; Büll C, Stoel MA, Den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor’s life. Cancer Res 74:3199–3204. https://doi.org/10.1158/0008-5472.CAN-14-0728. (PMID: 10.1158/0008-5472.CAN-14-072824830719) ; Kałuża A, Szczykutowicz J, Ferens-Sieczkowska M (2021) Glycosylation: rising potential for prostate cancer evaluation. Cancers (Basel) 13. https://doi.org/10.3390/cancers13153726. ; Belicky S, Černocká H, Bertok T et al (2017) Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 117:89–94. https://doi.org/10.1016/j.bioelechem.2017.06.005. (PMID: 10.1016/j.bioelechem.2017.06.005286511745667740) ; Ohyama C, Hosono M, Nitta K et al (2004) Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 14:671–679. (PMID: 10.1093/glycob/cwh07115044396) ; Silva PMS, Lima ALR, Silva BVM et al (2016) Cratylia mollis lectin nanoelectrode for differential diagnostic of prostate cancer and benign prostatic hyperplasia based on label-free detection. Biosens Bioelectron 85:171–177. https://doi.org/10.1016/j.bios.2016.05.004. (PMID: 10.1016/j.bios.2016.05.00427176915) ; Vermassen T, Speeckaert MM, Lumen N et al (2012) Glycosylation of prostate specific antigen and its potential diagnostic applications. Clin Chim Acta 413:1500–1505. https://doi.org/10.1016/j.cca.2012.06.007. (PMID: 10.1016/j.cca.2012.06.00722722018) ; Alley WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113:2668–2732. (PMID: 10.1021/cr3003714235311203992972) ; Hirabayashi J, Yamada M, Kuno A, Tateno H (2013) Lectin microarrays: Concept, principle and applications. Chem Soc Rev 42:4443–4458. https://doi.org/10.1039/c3cs35419a. (PMID: 10.1039/c3cs35419a23443201) ; Shimomura M, Nakayama K, Azuma K et al (2015) Establishment of a novel lectin-antibody ELISA system to determine core-fucosylated haptoglobin. Clin Chim Acta 446:30–36. https://doi.org/10.1016/j.cca.2015.03.037. (PMID: 10.1016/j.cca.2015.03.03725861849) ; Lam SK, Ng TB (2011) Lectins: Production and practical applications. Appl Microbiol Biotechnol 89:45–55. (PMID: 10.1007/s00253-010-2892-920890754) ; Rahman SFA, Md Arshad MK, Gopinath SCB et al (2021) Glycosylated biomarker sensors: advancements in prostate cancer diagnosis. Chem Commun 57:9640–9655. https://doi.org/10.1039/d1cc03080a. (PMID: 10.1039/d1cc03080a) ; Pihikova D, Kasak P, Kubanikova P et al (2016) Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta 934:72–79. https://doi.org/10.1016/j.aca.2016.06.043. (PMID: 10.1016/j.aca.2016.06.043275063465659379) ; Sánchez-tirado E, González-cortés A, Yáñez-sedeño P, Pingarrón JM (2018) Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva. Biosens Bioelectron 113:88–94. https://doi.org/10.1016/j.bios.2018.04.056. (PMID: 10.1016/j.bios.2018.04.05629734035) ; Dalila RN, Arshad MKM, Gopinath SCB et al (2022) Faradaic electrochemical impedimetric analysis on MoS2/Au-NPs decorated surface for C-reactive protein detection. J Taiwan Inst Chem Eng 138. https://doi.org/10.1016/j.jtice.2022.104450. ; Tang X, Flandre D, Raskin JP et al (2011) A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sensors Actuators B Chem 156:578–587. https://doi.org/10.1016/j.snb.2011.02.002. (PMID: 10.1016/j.snb.2011.02.002) ; Kuphal M, Mills CA, Korri-Youssoufi H, Samitier J (2012) Polymer-based technology platform for robust electrochemical sensing using gold microelectrodes. Sensors Actuators B Chem 161:279–284. https://doi.org/10.1016/j.snb.2011.10.032. (PMID: 10.1016/j.snb.2011.10.032) ; Sharma PK, Kim ES, Mishra S et al (2022) Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. Biosens Bioelectron 212:114365. https://doi.org/10.1016/j.bios.2022.114365. (PMID: 10.1016/j.bios.2022.11436535671696) ; Supraja P, Tripathy S, Singh R et al (2021) Towards point-of-care diagnosis of Alzheimer’s disease: Multi-analyte based portable chemiresistive platform for simultaneous detection of β-amyloid (1–40) and (1–42) in plasma. Biosens Bioelectron 186:113294. https://doi.org/10.1016/j.bios.2021.113294. (PMID: 10.1016/j.bios.2021.11329433971525) ; Ibau C, Arshad MKM, Gopinath SCB et al (2020) Immunosensing prostate-specific antigen: Faradaic vs non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device. Int J Biol Macromol 162:1924–1936. https://doi.org/10.1016/j.ijbiomac.2020.08.125. (PMID: 10.1016/j.ijbiomac.2020.08.12532822729) ; West A (2018) Chapter 3 - Experimental methods to investigate self-assembly at interfaces. In: Ball V (ed) Interface Science and Technology. Elsevier B.V., pp 131–241. ; Ubuo EE, Udoetok IA, Tyowua AT et al (2021) The direct cause of amplified wettability : roughness or surface chemistry? J Compos Sci 5:1–9. (PMID: 10.3390/jcs5080213) ; Swain PS, Lipowsky R (1998) Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s Laws. Langmuir 14:6772–6780. (PMID: 10.1021/la980602k) ; Yan Q, Zheng H-N, Jiang C et al (2015) EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester. RSC Adv 5:69939–69947. (PMID: 10.1039/C5RA13844B) ; Lim CY, Owens NA, Wampler RD et al (2014) Succinimidyl ester surface chemistry: implications of the competition between aminolysis and hydrolysis on covalent protein immobilization. Langmuir 30:12868–12878. (PMID: 10.1021/la503439g253174954222659) ; Nam K, Kimura T, Kishida A (2008) Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents. Macromol Biosci 8:32–37. (PMID: 10.1002/mabi.20070020618023082) ; Zeng Q (2018) Size matching effect on Wenzel wetting on fractal surfaces. Results Phys 10:588–593. (PMID: 10.1016/j.rinp.2018.07.010) ; Ko YG, Ma PX (2009) Surface-grafting of phosphates onto a polymer for potential biomimetic functionalization of biomaterials. J Colloid Interface Sci 330:77–83. (PMID: 10.1016/j.jcis.2008.10.01518977490) ; Mendoza SM, Arfaoui I, Zanarini S et al (2007) Improvements in the characterization of the crystalline structure of acid-terminated alkanethiol self-assembled monolayers on Au(111). Langmuir 23:582–588. (PMID: 10.1021/la060553917209609) ; Delamarche E, Sundarababu G, Biebuyck H et al (1996) Immobilization of antibodies on a photoactive self-assembled monolayer on gold. Langmuir 12:1997–2006. (PMID: 10.1021/la950836t) ; Böcking T, Wong ELS, James M et al (2006) Immobilization of dendrimers on Si–C linked carboxylic acid-terminated monolayers on silicon(111). Thin Solid Films 515:1857–1863. (PMID: 10.1016/j.tsf.2006.07.017) ; Niedermaier I, Kolbeck C, Taccardi N et al (2012) Organic reactions in ionic liquids studied by in situ XPS. ChemPhysChem 13:1725–1735. (PMID: 10.1002/cphc.20110096522383374) ; Castner DG, Hinds K, Grainger DW (1996) X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12:5083–5086. (PMID: 10.1021/la960465w) ; Azmi UZM, Yusof NA, Kusnin N et al (2018) Sandwich electrochemical immunosensor for early detection of tuberculosis based on graphene/polyaniline-modified screen-printed gold electrode. Sensors (Switzerland) 18:1–14. ; Jolly P, Damborsky P, Madaboosi N et al (2016) DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 79:313–319. (PMID: 10.1016/j.bios.2015.12.05826720920) ; Kavosi B, Salimi A, Hallaj R, Moradi F (2015) Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron 74:915–923. (PMID: 10.1016/j.bios.2015.07.06426257183) ; Argoubi W, Sánchez A, Parrado C et al (2018) Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors Actuators B Chem 255:309–315. (PMID: 10.1016/j.snb.2017.08.045) ; Zapatero-Rodríguez J, Liébana S, Sharma S et al (2018) Detection of free prostate-specific antigen using a novel single-chain antibody (scAb)-based magneto-immunosensor. Bionanoscience 8:680–689. (PMID: 10.1007/s12668-017-0394-2)
  • Grant Information: MyPAIR/1/2020/STG05/UniMAP/1 Hubert Curien Partnership - Hibiscus Grant
  • Contributed Indexing: Keywords: Biomarkers; Gold-interdigited microelectrode; Impedimetric biosensor; Lectin; Prostate cancer; Prostate-specific antigen
  • Substance Nomenclature: 0 (Lectins) ; 0 (Biomarkers, Tumor) ; EC 3.4.21.77 (Prostate-Specific Antigen)
  • Entry Date(s): Date Created: 20240131 Date Completed: 20240202 Latest Revision: 20240209
  • Update Code: 20240209

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -