Zum Hauptinhalt springen

Xanthomonas immunity proteins protect against the cis-toxic effects of their cognate T4SS effectors.

Oka, GU ; Souza, DP ; et al.
In: EMBO reports, Jg. 25 (2024-03-01), Heft 3, S. 1436-1452
Online academicJournal

Titel:
Xanthomonas immunity proteins protect against the cis-toxic effects of their cognate T4SS effectors.
Autor/in / Beteiligte Person: Oka, GU ; Souza, DP ; Sgro, GG ; Guzzo, CR ; Dunger, G ; Farah, CS
Link:
Zeitschrift: EMBO reports, Jg. 25 (2024-03-01), Heft 3, S. 1436-1452
Veröffentlichung: 2024- : [London] : Nature Publishing Group ; <i>Original Publication</i>: Oxford, UK : Published for EMBO by Oxford University Press, 2000-, 2024
Medientyp: academicJournal
ISSN: 1469-3178 (electronic)
DOI: 10.1038/s44319-024-00060-6
Schlagwort:
  • Humans
  • Type IV Secretion Systems metabolism
  • Anti-Bacterial Agents metabolism
  • Bacterial Proteins metabolism
  • Xanthomonas metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [EMBO Rep] 2024 Mar; Vol. 25 (3), pp. 1436-1452. <i>Date of Electronic Publication: </i>2024 Feb 08.
  • MeSH Terms: Bacterial Proteins* / metabolism ; Xanthomonas* / metabolism ; Humans ; Type IV Secretion Systems / metabolism ; Anti-Bacterial Agents / metabolism
  • References: Alegria MC, Souza DP, Andrade MO, Docena C, Khater L, Ramos CHI, da Silva ACR, Farah CS (2005) Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol 187:2315–2325. (PMID: 15774874106522610.1128/JB.187.7.2315-2325.2005) ; Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808. (PMID: 19946141278658310.1128/MMBR.00023-09) ; Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309:1245–1248. (PMID: 1610988110.1126/science.1115109) ; Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211. (PMID: 1555496210.1111/j.1365-2958.2004.04345.x) ; Barnes CO, Pielak GJ (2011) In-cell protein NMR and protein leakage. Proteins 79:347–351. (PMID: 21120863301645010.1002/prot.22906) ; Basler M, Mekalanos JJ (2012) Type 6 secretion dynamics within and between bacterial cells. Science 337:815. https://doi.org/10.1126/science.1222901. (PMID: 10.1126/science.1222901227678973557511) ; Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS (2019) The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog 15:e1007651. (PMID: 31513674675919610.1371/journal.ppat.1007651) ; Benz J, Meinhart A (2014) Antibacterial effector/immunity systems: it’s just the tip of the iceberg. Curr Opin Microbiol 17:1–10. (PMID: 2458168610.1016/j.mib.2013.11.002) ; Benz J, Sendlmeier C, Barends TRM, Meinhart A (2012) Structural insights into the effector–immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE 7:e40453. ; Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal I (2015) Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep 7:990–1004. (PMID: 2647215910.1111/1758-2229.12346) ; Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160. (PMID: 2041391710.1007/s12038-010-0015-5) ; Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW (2012) Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 20:501–510. (PMID: 2284096610.1016/j.tim.2012.06.005) ; Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T (2016) The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2:16183. (PMID: 27723728532530710.1038/nmicrobiol.2016.183) ; Cappelletti PA, dos Santos RF, do Amaral AM, Homem RA, Souza TdosS, Machado MA, Farah CS (2011) Structure-function analysis of the HrpB2-HrcU interaction in the Xanthomonas citri type III secretion system. PLoS ONE 6:e17614. (PMID: 21408079305232210.1371/journal.pone.0017614) ; Cascales E, Christie PJ (2004a) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173. (PMID: 1515595210.1126/science.1095211) ; Cascales E, Christie PJ (2004b) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 101:17228–17233. (PMID: 1556994453537710.1073/pnas.0405843101) ; Cernooka E, Rumnieks J, Zrelovs N, Tars K, Kazaks A (2022) Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci Rep 12:5005. (PMID: 35322067894305510.1038/s41598-022-08765-1) ; Chandran V, Fronzes R, Duquerroy S, Cronin N, Waksman G, Navaza J, Waksman G, Navaza J (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015. (PMID: 19946264279799910.1038/nature08588) ; Christie PJ, Whitaker N, González-Rivera C (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591. (PMID: 24389247406127710.1016/j.bbamcr.2013.12.019) ; Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62. (PMID: 2654958210.1016/j.tim.2015.10.005) ; Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359. (PMID: 2597870610.1038/nrmicro3456) ; Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. (PMID: 1517312041979710.1101/gr.849004) ; da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC et al (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463. (PMID: 1202421710.1038/417459a) ; Ding J, Wang W, Feng H, Zhang Y, Wang D-C (2012) Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J Biol Chem 287:26911–26920. (PMID: 22700987341102710.1074/jbc.M112.368043) ; Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA 110:2623–2628. (PMID: 23362380357494410.1073/pnas.1222783110) ; Dooley EE (2004) National center for biotechnology information. Environ Health Perspect 112:A674. (PMID: 15366188127712810.1289/ehp.112-1277128) ; Dunger G, Llontop E, Guzzo CR, Farah CS (2016) ScienceDirect the Xanthomonas type IV pilus. Curr Opin Microbiol 30:88–97. (PMID: 2687496310.1016/j.mib.2016.01.007) ; Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS (2014) Xanthomonas citri subsp. citri type IV pilus is required for twitching motility, biofilm development, and adherence. Mol Plant Microbe Interact 27:1132–1147. (PMID: 2518068910.1094/MPMI-06-14-0184-R) ; Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. (PMID: 1503414739033710.1093/nar/gkh340) ; Fleming A, Wright AE (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond B Biol Sci 93:306–317. (PMID: 10.1098/rspb.1922.0023) ; Fronzes R, Christie PJ, Waksman G (2009) The structural biology of type IV secretion systems. Nat Rev Microbiol 7:703–714. (PMID: 1975600910.1038/nrmicro2218) ; García-Bayona L, Guo MS, Laub MT (2017) Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. eLife 6:e24869. (PMID: 28323618538043410.7554/eLife.24869) ; Guzmán-Herrador DL, Fernández-Gómez A, Llosa M (2023) Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Front Cell Infect Microbiol 13:1146000. (PMID: 369498161002539210.3389/fcimb.2023.1146000) ; Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ et al (2020) Array programming with NumPy. Nature 585:357–362. (PMID: 32939066775946110.1038/s41586-020-2649-2) ; Herreweghe V, Leysen S, Van Herreweghe JM, Yoneda K, Ogata M, Usui T, Araki T, Michiels CW, Strelkov SV (2015) The structure of the proteinaceous inhibitor PliI from Aeromonas hydrophila in complex with its target lysozyme. Acta Crystallogr D Biol Crystallogr 71:344–351. (PMID: 2566474510.1107/S1399004714025863) ; Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci USA 114:9427–9432. (PMID: 28808000558446110.1073/pnas.1711219114) ; Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RRS, Silverman JM, Ohlson BB, Hicks KG, Plemel RL et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37. (PMID: 20114026283147810.1016/j.chom.2009.12.007) ; Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. Preprint at https://arxiv.org/abs/1704.04861. ; Ilangovan A, Connery S, Waksman G (2015) Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol 23:301–310. (PMID: 2582534810.1016/j.tim.2015.02.012) ; Iwata T, Watanabe A, Kusumoto M, Akiba M (2016) Peptidoglycan acetylation of Campylobacter jejuni is essential for maintaining cell wall integrity and colonization in chicken intestine. Appl Environ Microbiol 82:6284–6290. (PMID: 27520822506815310.1128/AEM.02068-16) ; Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. (PMID: 34265844837160510.1038/s41586-021-03819-2) ; Jurėnas D, Journet L (2021) Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol 115:383–394. (PMID: 3321707310.1111/mmi.14648) ; Kobayashi K (2021) Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms. PLoS Genet 17:e1009682. (PMID: 34280190832140210.1371/journal.pgen.1009682) ; Li M, Le Trong I, Carl MA, Larson ET, Chou S, De Leon JA, Dove SL, Stenkamp RE, Mougous JD (2012) Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog 8:e1002613. (PMID: 22511866332521310.1371/journal.ppat.1002613) ; Li YG, Christie PJ (2018) The agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems. Curr Top Microbiol Immunol 418:233–260. (PMID: 298083387011205) ; Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci USA 100:10465–10470. (PMID: 1292573719358410.1073/pnas.1830264100) ; Lowe G, Sheppard G, Sinnott ML, Williams A (1967) Lysozyme-catalysed hydrolysis of some beta-aryl di-N-acetylchitobiosides. Biochem J 104:893–899. (PMID: 6049930127123010.1042/bj1040893) ; Macé K, Vadakkepat AK, Redzej A, Lukoyanova N, Oomen C, Braun N, Ukleja M, Lu F, Costa TRD, Orlova EV et al (2022) Cryo-EM structure of a type IV secretion system. Nature 607:191–196. (PMID: 35732732925949410.1038/s41586-022-04859-y) ; MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107:19520–19524. (PMID: 20974937298415510.1073/pnas.1012931107) ; Metcalf JA, Funkhouser-Jones LJ, Brileya K, Reysenbach A-L, Bordenstein SR (2014) Antibacterial gene transfer across the tree of life. eLife 3:e04266. (PMID: 25422936424155810.7554/eLife.04266) ; Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. (PMID: 35637307918428110.1038/s41592-022-01488-1) ; Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193:6057–6069. (PMID: 21890705319489110.1128/JB.05671-11) ; Navarro PP, Vettiger A, Ananda VY, Llopis PM, Allolio C, Bernhardt TG, Chao LH (2022) Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nat Microbiol 7:1621–1634. https://doi.org/10.1038/s41564-022-01210-z. (PMID: 10.1038/s41564-022-01210-z360971719519445) ; Oka GU, Souza DP, Cenens W, Matsuyama BY, Cardoso MVC, Oliveira LC, da Silva Lima F, Cuccovia IM, Guzzo CR, Salinas RK et al (2022) Structural basis for effector recognition by an antibacterial type IV secretion system. Proc Natl Acad Sci USA 119:e2112529119. (PMID: 3498384610.1073/pnas.2112529119) ; Oliveira LC, Souza DP, Oka GU, Lima F, da S, Oliveira RJ, Favaro DC, Wienk H, Boelens R, Farah CS, Salinas RK (2016) VirB7 and VirB9 interactions are required for the assembly and antibacterial activity of a type IV secretion system. Structure 24:1707–1718. (PMID: 2759468510.1016/j.str.2016.07.015) ; Pace CN, Scholtz JM (1997) Measuring the conformational stability of a protein. Protein Struct: A Pract Approach 2:299–321. (PMID: 10.1093/oso/9780199636198.003.0012) ; Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. (PMID: 3288110110.1002/pro.3943) ; Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148. (PMID: 24384601425607810.1038/nrmicro3185) ; Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347. (PMID: 21776080314602010.1038/nature10244) ; Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, Carl MA, Agnello DM, Schwarz S, Goodlett DR, Vollmer W et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11:538–549. (PMID: 22607806335870410.1016/j.chom.2012.04.007) ; Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:E5044–51. (PMID: 27503894500327410.1073/pnas.1608858113) ; Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S et al (2022) Database resources of the national center for biotechnology information. Nucleic Acids Res 50:D20–D26. (PMID: 3485094110.1093/nar/gkab1112) ; Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. (PMID: 2274377210.1038/nmeth.2019) ; Schwarz S, West TE, Boyer F, Chiang W-C, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068. (PMID: 20865170292880010.1371/journal.ppat.1001068) ; Sena-Vélez M, Redondo C, Graham JH, Cubero J (2016) Presence of extracellular DNA during biofilm formation by Xanthomonas citri subsp. citri strains with different host range. PLoS ONE 11:1–17. (PMID: 10.1371/journal.pone.0156695) ; Sgro GG, Costa TRD, Cenens W, Souza DP, Cassago A, Coutinho de Oliveira L, Salinas RK, Portugal RV, Farah CS, Waksman G (2018) Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nat Microbiol 3:1429–1440. (PMID: 30349081626481010.1038/s41564-018-0262-z) ; Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF, Dos Santos TR, Alvarez-Martinez CE, Salinas RK et al (2019) Bacteria-killing type IV secretion systems. Front Microbiol 10:1078. (PMID: 31164878653667410.3389/fmicb.2019.01078) ; Sheedlo MJ, Ohi MD, Lacy DB, Cover TL (2022) Molecular architecture of bacterial type IV secretion systems. PLoS Pathog 18:e1010720. (PMID: 35951533937133310.1371/journal.ppat.1010720) ; Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. (PMID: 20452953285717710.1101/cshperspect.a000414) ; Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK (2011) A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog 7:e1002031. (PMID: 21589901309336610.1371/journal.ppat.1002031) ; Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LRS, Salinas RK et al (2015) Bacterial killing via a type IV secretion system. Nat Commun 6:6453. (PMID: 2574360910.1038/ncomms7453) ; Tassinari M, Doan T, Bellinzoni M, Chabalier M, Ben-Assaya M, Martinez M, Gaday Q, Alzari PM, Cascales E, Fronzes R et al (2022) The antibacterial type VII secretion system of Bacillus subtilis: structure and interactions of the pseudokinase YukC/EssB. MBio 13:e0013422. (PMID: 3615428110.1128/mbio.00134-22) ; Teufel F, Armenteros JJA, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40:1023–1025. https://doi.org/10.1038/s41587-021-01156-3. (PMID: 10.1038/s41587-021-01156-3349809159287161) ; Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A et al (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444. (PMID: 3479137110.1093/nar/gkab1061) ; Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838. (PMID: 1151897010.1038/35090602) ; Watanabe I, Yamada E (1983) The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn 46:173–182. (PMID: 688215110.1679/aohc.46.173) ; Whitney JC, Chou S, Russell AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD (2013) Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 288:26616–26624. (PMID: 23878199377220810.1074/jbc.M113.488320) ; Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR et al (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163:607–619. (PMID: 26456113462433210.1016/j.cell.2015.09.027)
  • Grant Information: 2017/17303-7 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); 2018/09277-9 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); 2011/50521-1 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); 2014/04294-1 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); 2011/22571-4 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); 2021/10577-0 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Contributed Indexing: Keywords: cis-intoxication; Bacterial Competition; Biofilm; Immunity Protein; Type IV Secretion System
  • Substance Nomenclature: 0 (Bacterial Proteins) ; 0 (Type IV Secretion Systems) ; 0 (Anti-Bacterial Agents)
  • Entry Date(s): Date Created: 20240208 Date Completed: 20240314 Latest Revision: 20240315
  • Update Code: 20240315
  • PubMed Central ID: PMC10933484

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -