Zum Hauptinhalt springen

Biochar-modified constructed wetlands using Eclipta alba as a plant for sustainable rural wastewater treatment.

Panghal, V ; Singh, A ; et al.
In: Environmental science and pollution research international, Jg. 31 (2024-03-01), Heft 11, S. 17299-17310
Online academicJournal

Titel:
Biochar-modified constructed wetlands using Eclipta alba as a plant for sustainable rural wastewater treatment.
Autor/in / Beteiligte Person: Panghal, V ; Singh, A ; Arora, D ; Kumar, S
Link:
Zeitschrift: Environmental science and pollution research international, Jg. 31 (2024-03-01), Heft 11, S. 17299-17310
Veröffentlichung: <2013->: Berlin : Springer ; <i>Original Publication</i>: Landsberg, Germany : Ecomed, 2024
Medientyp: academicJournal
ISSN: 1614-7499 (electronic)
DOI: 10.1007/s11356-024-32144-0
Schlagwort:
  • Wastewater
  • Waste Disposal, Fluid methods
  • Wetlands
  • Nitrates
  • Plants
  • Nitrogen analysis
  • Phosphates
  • Sulfates
  • Eclipta
  • Environmental Pollutants
  • Water Purification methods
  • Charcoal
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Sci Pollut Res Int] 2024 Mar; Vol. 31 (11), pp. 17299-17310. <i>Date of Electronic Publication: </i>2024 Feb 10.
  • MeSH Terms: Eclipta* ; Environmental Pollutants* ; Water Purification* / methods ; Charcoal* ; Wastewater ; Waste Disposal, Fluid / methods ; Wetlands ; Nitrates ; Plants ; Nitrogen / analysis ; Phosphates ; Sulfates
  • References: Abdelhakeem SG, Aboulroos SA, Kamel MM (2016) Performance of a vertical subsurface flow constructed wetland under different operational conditions. J Adv Res 7(5):803–814. https://doi.org/10.1016/j.jare.2015.12.002. (PMID: 10.1016/j.jare.2015.12.002) ; Abedi T, Mojiri A (2019) Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environ Technol Innov 16:100472. (PMID: 10.1016/j.eti.2019.100472) ; Anderson G, Malcolm RE (1974) The nature of alkali-soluble soil organic phosphates. J Soil Sci 25(3):282–297. (PMID: 10.1111/j.1365-2389.1974.tb01124.x) ; Ansari A, Golabi MH (2019) Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands—a case study: Meighan Wetland. Iran Int Soil Water Conserv Res 7(1):64–70. (PMID: 10.1016/j.iswcr.2018.10.001) ; APHA (2005) Standard Methods for the Examinations of Water and Wastewater, 21st edn. APHA and AWWA and WEF DC, Washington. ; Armstrong J, Armstrong W (1990). Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytologist, 114(1):121–128. ; Asaad AA, El-Hawary AM, Abbas MH, Mohamed I, Abdelhafez AA, Bassouny MA (2022) Reclamation of wastewater in wetlands using reed plants and biochar. Sci Rep 12(1):19516. (PMID: 36376384966343610.1038/s41598-022-24078-9) ; Barya MP, Gupta D, Thakur TK, Shukla R, Singh G, Mishra VK (2020) Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: a field-scale study. Water Pract Technol 15(2):528–539. (PMID: 10.2166/wpt.2020.042) ; Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. (PMID: 2185518710.1016/j.envpol.2011.07.023) ; Braga GB, Remoaldo PC, Fiúza ALDC (2016) A methodology for definition of rural spaces: an implementation in Brazil. Ciênc Rural 46:375–380. (PMID: 10.1590/0103-8478cr20150464) ; Brix H, Schierup HH (1990) Soil oxygenation in constructed reedbeds: the role of macrophyte and soil-atmosphere interface oxygen transport. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 53–66. (PMID: 10.1016/B978-0-08-040784-5.50010-3) ; Burgoon PS (1989) Wastewater treatment in vegetated submerged beds using artificial substrates. MS thesis, University of Florida. ; Busnardo MJ, Gersberg RM, Langis R, Sinicrope TL, Zedler JB (1992) Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods. Ecol Eng 1:287–307. (PMID: 10.1016/0925-8574(92)90012-Q) ; Caselles-Osorio A, García J (2007) Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Sci Total Environ 378:253–262. (PMID: 1743341610.1016/j.scitotenv.2007.02.031) ; Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N 2 O emissions? Sci Rep 3(1):1732. https://doi.org/10.1038/srep01732. ; Census of India (2011) District census handbook, Jhajjar, Haryana. https://www.census2011.co.in/data/village/61703-dighal-haryana.html . Accessed 25 Jun 2023. ; Chand N, Suthar S, Kumar K, Tyagi VK (2021) Enhanced removal of nutrients and coliforms from domestic wastewater in cattle dung biochar-packed Colocasia esculenta-based vertical subsurface flow constructed wetland. Journal of Water Process Engineering 41:101994. (PMID: 10.1016/j.jwpe.2021.101994) ; Cheong YW, Min JS, Kwon KS (1998) Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine. South Korea J Geochem Explor 64(1–3):147–152. (PMID: 10.1016/S0375-6742(98)00028-4) ; Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut 128:283–295. (PMID: 10.1023/A:1010336703606) ; Das B, Thakur S, Chaithanya MS, Biswas P (2019) Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass Bioenerg 122:231–237. (PMID: 10.1016/j.biombioe.2019.01.017) ; Dax T (1996) Defining rural areas—international comparisons and the OECD indicators1. Rural Soc 6(3):3–18. (PMID: 10.5172/rsj.6.3.3) ; De Rozari P, Greenway M, El Hanandeh A (2015) An investigation into the effectiveness of sand media amended with biochar to remove BOD5, suspended solids and coliforms using wetland mesocosms. Water Sci Technol 71(10):1536–1544. (PMID: 2644249610.2166/wst.2015.120) ; De Rozari P, Greenway M, El Hanandeh A (2016) Phosphorus removal from secondary sewage and septage using sand media amended with biochar in constructed wetland mesocosms. Sci Total Environ 569:123–133. (PMID: 2734111310.1016/j.scitotenv.2016.06.096) ; De Rozari P, Greenway M, El Hanandeh A (2018) Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar. Ecol Eng 111:1–10. (PMID: 10.1016/j.ecoleng.2017.11.002) ; Decamp O, Warren A (1998) Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment. Water Res 32(7):1989–1996. (PMID: 10.1016/S0043-1354(97)00461-2) ; Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213:47–55. (PMID: 10.1007/s11270-010-0366-4) ; Ding X, Xue Y, Zhao Y, Xiao W, Liu Y, Liu J (2018) Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands. J Clean Prod 172:541–551. (PMID: 10.1016/j.jclepro.2017.10.170) ; Dordio AV, Teimão J, Ramalho I, Carvalho AP, Candeias AE (2007) Selection of a support matrix for the removal of some phenoxy acetic compounds in constructed wetlands systems. Sci Total Environ 380(1–3):237–246. (PMID: 1737927210.1016/j.scitotenv.2007.02.015) ; Drayer AN, Richter SC (2016) Physical wetland characteristics influence amphibian community composition differently in constructed wetlands and natural wetlands. Ecol Eng 93:166–174. (PMID: 10.1016/j.ecoleng.2016.05.028) ; United State Environmental Protection Agency (1993) Subsurface flow constructed wetlands for wastewater treatment and wildlife habitat. USEPA832-R-93–005, Washington, DC, USA. ; Gersberg R, Elkins BV, Goldman CR (1983) Nitrogen removal in artificial wetlands. Water Res 17(9):1009–1014. (PMID: 10.1016/0043-1354(83)90041-6) ; Gersberg RM, Elkins BV, Lyon SR, Goldman CR (1986) Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res 20(3):363–368. (PMID: 10.1016/0043-1354(86)90085-0) ; Gotore O, Mushayi V, Tipnee S (2021) Evaluation of cattail characteristics as an invasive wetland plant and biomass usage management for biogas generation. Maejo Int J Energy Environmental Commun 3(2):1–6. (PMID: 10.54279/mijeec.v3i2.245167) ; Gotore O, Rameshprabu R, Itayama T (2022) Adsorption performances of corn cob-derived biochar in saturated and semi-saturated vertical-flow constructed wetlands for nutrient removal under erratic oxygen supply. Environ Chem Ecotoxicol 4:155–163. (PMID: 10.1016/j.enceco.2022.05.001) ; Greenway M, Woolley A (1999) Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng 12(1–2):39–55. (PMID: 10.1016/S0925-8574(98)00053-6) ; Gupta P, Ann TW, Lee SM (2016) Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environ Eng Res 21(1):36–44. (PMID: 10.4491/eer.2015.067) ; Haydar S, Anis M, Afaq M (2020) Performance evaluation of hybrid constructed wetlands for the treatment of municipal wastewater in developing countries. Chin J Chem Eng 28(6):1717–1724. (PMID: 10.1016/j.cjche.2020.02.017) ; Ji Z, Tang W, Pei Y (2022) Constructed wetland substrates: a review on development, function mechanisms, and application in contaminants removal. Chemosphere 286:131564. (PMID: 3429829810.1016/j.chemosphere.2021.131564) ; Jia W, Zhang J, Li P, Xie H, Wu J, Wang J (2011) Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms:effect of feeding strategies. Ecol Eng 37(11):1815–1821. https://doi.org/10.1016/j.ecoleng.2011.06.019. (PMID: 10.1016/j.ecoleng.2011.06.019) ; Kadlec RH, Wallace S (2008) Treatment wetlands. CRC Press, Boca Raton, Florida, USA. (PMID: 10.1201/9781420012514) ; Kameyama K, Miyamoto T, Shiono T, Shinogi Y (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41(4):1131–1137. (PMID: 2275105510.2134/jeq2010.0453) ; Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20(2):157–169. (PMID: 10.1016/S0925-8574(03)00011-9) ; Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124. (PMID: 10.1007/s13157-009-0003-4) ; Khuhawar MY, Zaman Brohi RO, Jahangir TM, Lanjwani MF (2018) Water quality assessment of Ramser site, Indus Delta, Sindh, Pakistan. Environ Monit Assess 190:1–11. (PMID: 10.1007/s10661-018-6756-6) ; Kizito S, Lv T, Wu S, Ajmal Z, Luo H, Dong R (2017) Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: role of media and tidal operation. Sci Total Environ 592:197–205. (PMID: 2831970710.1016/j.scitotenv.2017.03.125) ; Kumar M, Singh R (2019) Assessment of pollutant removal processes and kinetic modelling in vertical flow constructed wetlands at elevated pollutant loading. Environ Sci Pollut Res 26:18421–18433. (PMID: 10.1007/s11356-019-05019-y) ; Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144. (PMID: 1749590510.1038/447143a) ; Li M, Wu H, Zhang J, Ngo HH, Guo W, Kong Q (2017) Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: effect of C/N ratios. Bioresour Technol 240:157–164. (PMID: 2826230310.1016/j.biortech.2017.02.054) ; Li J, Fan J, Zhang J, Hu Z, Liang S (2018) Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environ Sci Pollut Res 25:13929–13937. (PMID: 10.1007/s11356-018-1597-y) ; Lu S, Zhang X, Wang J, Pei L (2016) Impacts of different media on constructed wetlands for rural household sewage treatment. J Clean Prod 127:325–330. (PMID: 10.1016/j.jclepro.2016.03.166) ; Maina CW, Mutua BM, Oduor SO (2011) Evaluating performance of vertical flow constructed wetland under various hydraulic loading rates in effluent polishing. J Water Sanit Hyg Dev 1(2):144–151. (PMID: 10.2166/washdev.2011.025) ; Marschner B, Werner S, Alfes K, Lübken M (2013) Potential dual use of biochar for wastewater treatment and soil amelioration. In: EGU General Assembly Conference Abstracts, Vienna, Austria, pp. 11260. ; Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097. (PMID: 1829604310.1016/j.biortech.2008.01.002) ; Mlih R, Bydalek F, Klumpp E, Yaghi N, Bol R, Wenk J (2020) Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands–A review. Ecol Eng 148:105783. (PMID: 10.1016/j.ecoleng.2020.105783) ; Mohan D, Sarswat A, Ok YS, Pittman-Jr CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. (PMID: 2463691810.1016/j.biortech.2014.01.120) ; Mohanty A, Ray S, Yadav AK, Chaudhury GR (2014) Optimization study: biological removal of inorganic nitrogen along with chemical oxygen demand from wastewater using response surface methodology. Clean - Soil Air Water 42(11):1583–1592. (PMID: 10.1002/clen.201300235) ; Mohanty SK, Valenca R, Berger AW, Iris KM, Xiong X, Saunders TM, Tsang DC (2018) Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment. Sci Total Environ 625:1644–1658. (PMID: 2999646010.1016/j.scitotenv.2018.01.037) ; Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255. (PMID: 10.1016/j.geoderma.2011.04.021) ; Nema A, Yadav KD, Christian RA (2020) Sustainability and performance analysis of constructed wetland for treatment of greywater in batch process. Int J Phytoremediation 22(6):644–652. (PMID: 3185183610.1080/15226514.2019.1701983) ; Ni WD, Zhang DQ, Gersberg RM, Hong J, Jinadasa KBSN, Ng WJ, Tan SK (2013) Statistical modeling of batch versus continuous feeding strategies for pollutant removal by tropical subsurface flow constructed wetlands. Wetlands 33:335–344. (PMID: 10.1007/s13157-013-0389-x) ; Priya ES, Selvan PS (2017) Water hyacinth (Eichhornia crassipes)—an efficient and economic adsorbent for textile effluent treatment–A review. Arab J Chem 10:S3548–S3558. (PMID: 10.1016/j.arabjc.2014.03.002) ; Raphael OD, Ojo SIA, Ogedengbe K, Eghobamien C, Morakinyo AO (2019) Comparison of the performance of horizontal and vertical flow constructed wetland planted with Rhynchospora corymbosa. Int J Phytoremediation 21(2):152–159. (PMID: 3065697610.1080/15226514.2018.1488809) ; Raphael DO, Okunade DA, Ogedengbe K, Adekunle OA (2020) Assessment of a batch-flow free water surface constructed wetland planted with Rhynchospora corymbosa (L.) Britton for campus greywater treatment. Environ Sci Pollut Res 27:4275–4283. (PMID: 10.1007/s11356-019-07095-6) ; Rathour R, Patel D, Shaikh S, Desai C (2019) Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures. Bioresour Technol 285:121349. (PMID: 3100494510.1016/j.biortech.2019.121349) ; Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29(1):83–146. (PMID: 10.1080/10643389991259182) ; Regelsberger M, Bahlo K, Conte G, Ebeling B, Masi F, Mitterer-Reichmann G, Platzer C, Regelsberger B, Urtane L, Wach G (2005) Guidelines for sustainable water management in tourism facilities. Arbeitsgemeinschaft ERNEUERBARE ENERGIE GMBH Feldgasse, Gleisdorf, Austria. ; Ricketts T, Johnson-Webb K, Taylor P (1998) Definitions of Rural: A Handbook For Health Policy Makers and Researchers. University of North Carolina. North Carolina Rural Health Research Program, Chapel Hill. ; Sonu K, Sogani M, Syed Z, Dongre A, Sharma G (2020) Effect of corncob derived biochar on microbial electroremediation of dye wastewater and bioenergy generation. Chemistry Select 5(31):9793–9798. ; Sonu K, Sogani M, Syed Z (2021) Integrated constructed wetland-microbial fuel cell using biochar as wetland matrix: influence on power generation and textile wastewater treatment. Chemistry Select 6(32):8323–8328. ; Stefanakis A, Akratos CS, Tsihrintzis VA (2014) Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Newnes. (PMID: 10.1016/B978-0-12-404612-2.00008-8) ; Stein OR, Hook PB, Biederman JA, Allen WC, Borden DJ (2003) Does batch operation enhance oxidation in subsurface constructed wetlands? Water Sci Technol 48(5):149–156. (PMID: 1462115910.2166/wst.2003.0306) ; Supreeth M (2022) Enhanced remediation of pollutants by microorganisms–plant combination. Int J Environ Sci Technol 19(5):4587–4598. (PMID: 10.1007/s13762-021-03354-7) ; Talukdar S, Pal S (2017) Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. Int Soil Water Conserv Res 5(2):109–121. (PMID: 10.1016/j.iswcr.2017.05.003) ; Tanner CC, D’Eugenio J, McBride GB, Sukias JP, Thompson K (1999) Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecol Eng 12(1–2):67–92. (PMID: 10.1016/S0925-8574(98)00055-X) ; Travis MJ, Wiel-Shafran A, Weisbrod N, Adar E, Gross A (2010) Greywater reuse for irrigation: effect on soil properties. Sci Total Environ 408(12):2501–2508. (PMID: 2035074410.1016/j.scitotenv.2010.03.005) ; Vidya Vijay M, Sudarsan JS, Nithiyanantham S (2019) Sustainability of constructed wetlands using biochar as effective absorbent for treating wastewaters. Int J Energy Water Res 3:153–164. (PMID: 10.1007/s42108-019-00025-9) ; Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65. (PMID: 1707899710.1016/j.scitotenv.2006.09.014) ; Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549.  https://doi.org/10.3390/w2030530. ; Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69. (PMID: 2079570410.1021/es101403q) ; Vymazal J, Brix H, Cooper P, Green M, Haberl R (1998) Constructed wetlands for wastewater treatment in Europe: Backhuys Leiden. Water Environ Res 67(5):855–862. ; Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht, Netherlands https://doi.org/10.1007/978-1-4020-8580-2. ; Wu S, Wallace S, Brix H, Kuschk P, Kirui WK, Masi F, Dong R (2015) Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance. Environ Pollut 201:107–120. (PMID: 2579203010.1016/j.envpol.2015.03.006) ; Wu Z, Xu F, Yang C, Su X, Guo F, Xu Q, Chen Y (2019) Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: a molecular and electrochemical mechanism. Bioresour Technol 275:297–306. (PMID: 3059484010.1016/j.biortech.2018.12.058) ; Xu J, Liu X, Huang J, Huang M, Wang T, Bao S, Fang T (2020) The contributions and mechanisms of iron-microbes-biochar in constructed wetlands for nitrate removal from low carbon/nitrogen ratio wastewater. RSC Adv 10(39):23212–23220. (PMID: 35520335905468010.1039/D0RA03609A) ; Zhou X, Wang X, Zhang H, Wu H (2017) Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour Technol 241:269–275. (PMID: 2857579010.1016/j.biortech.2017.05.072) ; Zhou X, Liang C, Jia L, Feng L, Wang R, Wu H (2018) An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: impact of influent strengths. Bioresour Technol 24:7844–7850. ; Zhou X, Wu S, Wang R, Wu H (2019) Nitrogen removal in response to the varying C/N ratios in subsurface flow constructed wetland microcosms with biochar addition. Environ Sci Pollut Res 26:3382–3391. (PMID: 10.1007/s11356-018-3871-4)
  • Contributed Indexing: Keywords: Batch mode; Biochar; Rural wastewater; Subsurface flow-constructed wetland; Sustainable wastewater treatment
  • Substance Nomenclature: 0 (Wastewater) ; 0 (biochar) ; 0 (Nitrates) ; 0 (Environmental Pollutants) ; N762921K75 (Nitrogen) ; 0 (Phosphates) ; 0 (Sulfates) ; 16291-96-6 (Charcoal)
  • Entry Date(s): Date Created: 20240210 Date Completed: 20240226 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -