Zum Hauptinhalt springen

Genetic determinants of micronucleus formation in vivo.

Adams, DJ ; Barlas, B ; et al.
In: Nature, Jg. 627 (2024-03-01), Heft 8002, S. 130-136
Online academicJournal

Titel:
Genetic determinants of micronucleus formation in vivo.
Autor/in / Beteiligte Person: Adams, DJ ; Barlas, B ; McIntyre, RE ; Salguero, I ; van der Weyden L ; Barros, A ; Vicente, JR ; Karimpour, N ; Haider, A ; Ranzani, M ; Turner, G ; Thompson, NA ; Harle, V ; Olvera-León, R ; Robles-Espinoza, CD ; Speak, AO ; Geisler, N ; Weninger, WJ ; Geyer, SH ; Hewinson, J ; Karp, NA ; Fu, B ; Yang, F ; Kozik, Z ; Choudhary, J ; Yu, L ; van Ruiten MS ; Rowland, BD ; Lelliott, CJ ; Del Castillo Velasco-Herrera, M ; Verstraten, R ; Bruckner, L ; Henssen, AG ; Rooimans, MA ; de Lange J ; Mohun, TJ ; Arends, MJ ; Kentistou, KA ; Coelho, PA ; Zhao, Y ; Zecchini, H ; Perry, JRB ; Jackson, SP ; Balmus, G
Link:
Zeitschrift: Nature, Jg. 627 (2024-03-01), Heft 8002, S. 130-136
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2024
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-07009-0
Schlagwort:
  • Animals
  • Humans
  • Mice
  • Chromosomes genetics
  • DNA Damage
  • Phenotype
  • Sirtuin 1
  • Synthetic Lethal Mutations
  • Genomic Instability genetics
  • Micronuclei, Chromosome-Defective
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Corporate Authors: Sanger Mouse Genetics Project
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2024 Mar; Vol. 627 (8002), pp. 130-136. <i>Date of Electronic Publication: </i>2024 Feb 14.
  • MeSH Terms: Genomic Instability* / genetics ; Micronuclei, Chromosome-Defective* ; Animals ; Humans ; Mice ; Chromosomes / genetics ; DNA Damage ; Phenotype ; Sirtuin 1 ; Synthetic Lethal Mutations
  • References: Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009). (PMID: 19847258290670010.1038/nature08467) ; Leibowitz, M. L., Zhang, C.-Z. & Pellman, D. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49, 183–211 (2015). (PMID: 2644284810.1146/annurev-genet-120213-092228) ; Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). (PMID: 10.1038/s41586-020-1969-6) ; Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). (PMID: 28738408587083010.1038/nature23449) ; Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017). (PMID: 28759889585735710.1038/nature23470) ; Bolognesi, C. et al. Chromosomal damage and ageing: effect on micronuclei frequency in peripheral blood lymphocytes. Age Ageing 28, 393–397 (1999). (PMID: 1045979410.1093/ageing/28.4.393) ; Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017). (PMID: 28533362546861710.1073/pnas.1705499114) ; Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017). (PMID: 28759028582656510.1038/ncb3586) ; Fenech, M. et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26, 125–132 (2011). (PMID: 2116419310.1093/mutage/geq052) ; Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2016). (PMID: 27918550553976010.1038/ncb3450) ; Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020). ; Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021). (PMID: 34819364864093610.1073/pnas.2103585118) ; Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018). (PMID: 30232450659962510.1038/s41586-018-0534-z) ; Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023). (PMID: 372865931032272010.1038/s41586-023-06084-7) ; Papathanasiou, S. et al. Heritable transcriptional defects from aberrations of nuclear architecture. Nature 619, 184–192 (2023). (PMID: 372866001032270810.1038/s41586-023-06157-7) ; Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012). (PMID: 22258507327113710.1038/nature10802) ; Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015). (PMID: 26017310474223710.1038/nature14493) ; Pereira, C. et al. Sequencing micronuclei reveals the landscape of chromosomal instability. Preprint at Biorxiv https://doi.org/10.1101/2021.10.28.466311 (2021). ; Lin, Y.-F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023). (PMID: 371651911030763910.1038/s41586-023-05974-0) ; Balmus, G. et al. A high-throughput in vivo micronucleus assay for genome instability screening in mice. Nat. Protoc. 10, 205–215 (2015). (PMID: 2555166510.1038/nprot.2015.010) ; Houlard, M. et al. MCPH1 inhibits condensin II during interphase by regulating its SMC2-Kleisin interface. eLife 10, e73348 (2021). (PMID: 34850681867383810.7554/eLife.73348) ; McIntyre, R. E. et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 8, e1003022 (2012). (PMID: 23166506349925610.1371/journal.pgen.1003022) ; Holloway, J. K. et al. Mammalian BTBD12 (SLX4) protects against genomic instability during mammalian spermatogenesis. PLoS Genet. 7, e1002094 (2011). (PMID: 21655083310720410.1371/journal.pgen.1002094) ; Maciejowski, J. et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52, 884–890 (2020). (PMID: 32719516748422810.1038/s41588-020-0667-5) ; Pillai, R. S., Will, C. L., Lührmann, R., Schümperli, D. & Müller, B. Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1‐like protein. EMBO J. 20, 5470–5479 (2001). (PMID: 1157447912564510.1093/emboj/20.19.5470) ; Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019). (PMID: 31748747688754910.1038/s41586-019-1765-3) ; Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). (PMID: 25826379438046510.1371/journal.pmed.1001779) ; de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). (PMID: 25885710440165710.1371/journal.pcbi.1004219) ; Fitzgerald, T. et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015). (PMID: 10.1038/nature14135) ; Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019). (PMID: 3037187810.1093/nar/gky1015) ; Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020). (PMID: 33057194711682610.1038/s41586-020-2832-5) ; Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016). (PMID: 2707541010.1038/nrm.2016.30) ; Skibbens, R. V. et al. Cohesinopathies of a feather flock together. PLoS Genet. 9, e1004036 (2013). (PMID: 24367282386859010.1371/journal.pgen.1004036) ; Deardorff, M. A. et al. RAD21 mutations cause a human cohesinopathy. Am. J. Hum. Genet. 90, 1014–1027 (2012). (PMID: 22633399337027310.1016/j.ajhg.2012.04.019) ; Bermudez, V. P. et al. The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc. Natl Acad. Sci. USA 100, 10237–10242 (2003). (PMID: 1293090219354510.1073/pnas.1434308100) ; Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008). (PMID: 1861405310.1016/j.molcel.2008.06.006) ; Ben-Shahar, T. R. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008). (PMID: 10.1126/science.1157774) ; Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009). (PMID: 1988681010.1146/annurev-genet-102108-134233) ; Souza, R. F. et al. Microsatellite instability in the insulin–like growth factor II receptor gene in gastrointestinal tumours. Nat. Genet. 14, 255–257 (1996). (PMID: 889655210.1038/ng1196-255) ; Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016). (PMID: 27552971510730910.1038/nrm.2016.93) ; Decarreau, J. et al. The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. Nat. Cell Biol. 19, 384–390 (2017). (PMID: 28263957537623810.1038/ncb3486) ; Kwon, N. H., Fox, P. L. & Kim, S. Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 18, 629–650 (2019). (PMID: 3107324310.1038/s41573-019-0026-3) ; Terret, M.-E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. Nature 462, 231–234 (2009). (PMID: 19907496277771610.1038/nature08550) ; Westerberg, G. et al. Safety, pharmacokinetics, pharmacogenomics and QT concentration–effect modelling of the SirT1 inhibitor selisistat in healthy volunteers. Brit. J. Clin. Pharmacol. 79, 477–491 (2015). (PMID: 10.1111/bcp.12513) ; Napper, A. D. et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48, 8045–8054 (2005). (PMID: 1633592810.1021/jm050522v) ; Brooks, C. L. & Gu, W. How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9, 123–128 (2009). (PMID: 1913200710.1038/nrc2562) ; van Leen, E., Brückner, L. & Henssen, A. G. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat. Genet. 54, 107–114 (2022). (PMID: 3514530210.1038/s41588-021-01000-z) ; Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008). (PMID: 1865389410.1126/science.1157880) ; Li, S., Yue, Z. & Tanaka, T. U. Smc3 deacetylation by Hos1 facilitates efficient dissolution of sister chromatid cohesion during early anaphase. Mol. Cell 68, 605–614 (2017). (PMID: 29100057567828010.1016/j.molcel.2017.10.009) ; Deardorff, M. A. et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489, 313–317 (2012). (PMID: 22885700344331810.1038/nature11316) ; van Schie, J. J. et al. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci. Alliance 6, e202201596 (2022). (PMID: 36622344973357010.26508/lsa.202201596) ; Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008). (PMID: 19041753285397510.1016/j.cell.2008.10.025) ; Meng, F. et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. eLife 9, e55828 (2020). (PMID: 32538779732416110.7554/eLife.55828) ; Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440–444 (2007). (PMID: 1800438510.1038/nature06268) ; Thakur, B. L. et al. Convergence of SIRT1 and ATR signaling to modulate replication origin dormancy. Nucleic Acids Res. 50, 5111–5128 (2022). (PMID: 35524559912259010.1093/nar/gkac299) ; Utani, K. et al. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res. 45, gkx468 (2017). (PMID: 10.1093/nar/gkx468) ; Gandhi, S. et al. Mitotic H3K9ac is controlled by phase-specific activity of HDAC2, HDAC3, and SIRT1. Life Sci. Alliance 5, e202201433 (2022). (PMID: 35981887938959310.26508/lsa.202201433) ; Zhu, X. et al. SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition. Nat. Chem. Biol. 19, 585–595 (2023). (PMID: 3663556610.1038/s41589-022-01240-y) ; Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016). (PMID: 27626380529582110.1038/nature19356) ; Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011). (PMID: 21677750357241010.1038/nature10163) ; Birling, M.-C. et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat. Genet. 53, 416–419 (2021). (PMID: 33833456839725910.1038/s41588-021-00825-y) ; Karp, N. A. et al. Applying the ARRIVE guidelines to an in vivo database. PLoS Biol. 13, e1002151 (2015). (PMID: 25992600443917310.1371/journal.pbio.1002151) ; Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016). (PMID: 2701911010.1038/ng.3538) ; Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018). ; Carrasco-Zanini, J. et al. Proteomic signatures for identification of impaired glucose tolerance. Nat. Med. 28, 2293–2300 (2022). (PMID: 36357677761463810.1038/s41591-022-02055-z) ; Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 51, 258–266 (2019). (PMID: 3059854910.1038/s41588-018-0302-x) ; Mathieson, I. et al. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat. Hum. Behav. 7, 790–801 (2023). ; McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016). (PMID: 27268795489382510.1186/s13059-016-0974-4) ; Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). (PMID: 32461654733419710.1038/s41586-020-2308-7) ; Choi, J. K. & Kim, Y.-J. Intrinsic variability of gene expression encoded in nucleosome positioning sequences. Nat. Genet. 41, 498–503 (2009). (PMID: 1925248910.1038/ng.319) ; Zhao, Y. et al. GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health. Nat. Commun. 12, 4178 (2021). (PMID: 34234147826375610.1038/s41467-021-24504-y) ; Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2021). (PMID: 3304574710.1093/nar/gkaa840) ; Mohun, T. J. & Weninger, W. J. Embedding embryos for high-resolution episcopic microscopy (HREM). Cold Spring Harb. Protoc. 2012, pdb.prot069583 (2012). (PMID: 10.1101/pdb.prot069583) ; Weninger, W. J. et al. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis. Model. Mech. 7, 1143–1152 (2014). (PMID: 25256713417452510.1242/dmm.016337) ; Geyer, S. H. et al. A staging system for correct phenotype interpretation of mouse embryos harvested on embryonic day 14 (E14.5). J. Anat. 230, 710–719 (2017). (PMID: 28185240538259110.1111/joa.12590) ; Balmus, G. et al. Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1. Hum. Mol. Genet. 21, 3408–3420 (2012). (PMID: 22575700339211510.1093/hmg/dds173) ; Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011). (PMID: 21866103317532510.1038/nature10348) ; van Ruiten, M. S. et al. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat. Struct. Mol. Biol. 29, 586–591 (2022). (PMID: 35710836920577610.1038/s41594-022-00773-z) ; Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017). (PMID: 28475897542221010.1016/j.cell.2017.04.013) ; Turner, G. Application of CRISPR/Cas9 Screening to Study Cancer Drivers and to Identify Novel Cancer Vulnerabilities (2020); www.repository.cam.ac.uk/handle/1810/303478 . ; Balmus, G. et al. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res. 15, 499–515 (2007). (PMID: 1767184310.1007/s10577-007-1154-x) ; Balmus, G. et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun. 10, 87 (2019). (PMID: 30622252632511810.1038/s41467-018-07729-2) ; Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, M. D. C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014). (PMID: 2453556810.1038/nbt.2800) ; Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014). (PMID: 25476604429082410.1186/s13059-014-0554-4) ; Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016). (PMID: 27760321508140510.1016/j.celrep.2016.09.079) ; Solomon, J. M. et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28–38 (2006). (PMID: 16354677131761710.1128/MCB.26.1.28-38.2006) ; Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019). (PMID: 3039528910.1093/nar/gky1106) ; Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2020). (PMID: 777900410.1093/nar/gkaa1074) ; Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021). (PMID: 3307038910.1002/pro.3978) ; Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression (Wiley, 2013); https://doi.org/10.1002/9781118548387 .
  • Grant Information: United Kingdom WT_ Wellcome Trust; 18796 United Kingdom CRUK_ Cancer Research UK; 206388/Z/17/Z United Kingdom WT_ Wellcome Trust; U54 HG006370 United States HG NHGRI NIH HHS
  • Contributed Indexing: Investigator: CL Tudor; AL Green; CI Mazzeo; E Siragher; C Lillistone; D Gleeson; D Sethi; T Bayzetinova; J Burvill; B Habib; L Weavers; R Maswood; E Miklejewska; M Woods; E Grau; S Newman; C Sinclair; E Brown; B Doe; A Galli; R Ramirez-Solis; E Ryder; K Steel; A Bradley; WC Skarnes; DJ Adams; D Lafont; VE Vancollie; RSB McLaren; L Hughes-Hallett; C Rowley; E Sanderson; E Tuck; M Dabrowska; M Griffiths; D Gannon; N Cockle; A Kirton; J Bottomley; C Ingle; C Lelliott; JK White
  • Substance Nomenclature: 0 (DSCC1 protein, human) ; EC 3.5.1.- (SIRT1 protein, human) ; EC 3.5.1.- (Sirtuin 1) ; 0 (SMC3 protein, human)
  • Entry Date(s): Date Created: 20240214 Date Completed: 20240308 Latest Revision: 20240318
  • Update Code: 20240318
  • PubMed Central ID: PMC10917660

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -