Zum Hauptinhalt springen

A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy.

Levin, DS ; Friedman, PS ; et al.
In: Medical physics, Jg. 51 (2024-04-01), Heft 4, S. 2905-2923
Online academicJournal

Titel:
A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy.
Autor/in / Beteiligte Person: Levin, DS ; Friedman, PS ; Ferretti, C ; Ristow, N ; Tecchio, M ; Litzenberg, DW ; Bashkirov, V ; Schulte, R
Link:
Zeitschrift: Medical physics, Jg. 51 (2024-04-01), Heft 4, S. 2905-2923
Veröffentlichung: 2017- : Hoboken, NJ : John Wiley and Sons, Inc. ; <i>Original Publication</i>: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics., 2024
Medientyp: academicJournal
ISSN: 2473-4209 (electronic)
DOI: 10.1002/mp.17018
Schlagwort:
  • Radionuclide Imaging
  • Radiotherapy Dosage
  • Protons
  • Radiometry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Phys] 2024 Apr; Vol. 51 (4), pp. 2905-2923. <i>Date of Electronic Publication: </i>2024 Mar 08.
  • MeSH Terms: Protons* ; Radiometry* ; Radionuclide Imaging ; Radiotherapy Dosage
  • Comments: Update of: ArXiv. 2024 Mar 8;:. (PMID: 37292473)
  • References: Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose‐rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):24. ; Konradsson E, Arendt M, Jensen KB, et al. Establishment and initial experience of clinical FLASH radiotherapy in Canine cancer patients. Front Oncol. 2021;11:658004. doi:10.3389/fonc.2021.658004. ; Lin B, Gao F, Yang Y, et al. FLASH radiotherapy: history and future. Front Oncol. 2021;11:644400. doi:10.3389/fonc.2021.644400. ; Schüler E, Acharya M, Montay‐Gruel P, Loo BJ, Vozenin M. Ultra‐high dose rate electron beams and the FLASH effect: from preclinical evidence to a new radiotherapy paradigm. Med Phys. 2022;49(3):2082‐2095. ; Cunningham S, McCauley S, Vairamani K, et al. FLASH proton pencil beam scanning irradiation minimizes radiation‐induced leg contracture and skin toxicity in mice. Cancers. 2021;13(5):1012. ; Sørensen BS, Sitarz MK, Ankjærgaard C, et al. Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model. Radiother Oncol. 2022;175:178‐184. ; Mascia A, Daugherty EC, Zhang Y, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases. JAMA Oncol. 2023;9(1):62‐69. ; Kim MM, Darafsheh A, Schuemann J, et al. Development of Ultra‐High Dose Rate (FLASH) particle therapy. IEEE Trans Radiat Plasma Med Sci. 2021;6(3):252‐262. ; Polanek R, Hafz NA, Lecz Z, et al. 1 kHz laser accelerated electron beam feasible for radiotherapy uses: a PIC–Monte Carlo based study.  Nucl Instrum Methods Phys Res A. 2021;987:164841. ; Faillace L, Alesini D, Bisogni G, et al. Perspectives in linear accelerator for FLASH VHEE: study of a compact C‐band system. Physica Med. 2022;104:149‐159. ; Matuszak N, Suchorska WM, Milecki P, et al. FLASH radiotherapy: an emerging approach in radiation therapy. Rep Pract Oncol Radiother. 2022;27(2):344‐351. ; Schuler E, Acharya M, Montay‐Gruek P, Loo Jr BW, Vozenin M‐C, Maxim PG. Ultra‐high dose rate electron beams and the flash effect: from preclinical evidence to a new radioherapy paradigm. Med Phys. 2022;49(3):2082‐2095. ; Mmontay‐Gruel P, Acharya MM, Jorge PG, et al. Hypofractionated FLASH‐RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin Cancer Res. 2021;27:775‐784. ; Bergoz Instrumentation. AC Current Transformer User's Manual. 2020. Accessed January 2023. [Online]. https://www.bergoz.com/wp‐content/uploads/ACCT‐manual‐5‐4.pdf. ; Yang Y, Shi C, Chin‐Cheng C, et al. A 2D strip ionization chamber array with high spatiotemporal resolution for proton pencil beam scanning FLASH radiotherapy. Med Phys. 2022;2022(49):5464‐5475. ; Levin D, Friedman P, Ginter T, Ferretti C, Ristow N, Kaipainen A. A high performance scintillator ion beam monitor. In: 11th Int. Beam Instrum. Conf. IBIC2022. Poland JACoW Publishing, Kraków, Poland; 2022. doi:10.18429/JACoW‐IBIC2022‐TU3C4. ; Srinivasan S, Bayle H, Touzain ET. Lab‐industry collaboration: industrialisation of a novel non‐interceptive turn‐key diagnostic system for medical applications. In: 13th International Particle Accelerator Conference: IPAC2022, Bankok, Thailand. 2022. ; Kanouta E, Poulsen PR, Kertzscher G, Sitarz MK, Sorenson BS, Johansen JG. Time‐resolved dose rate measurements in pencil beam scanning proton FLASH therapy with a fiber‐coupled scintillator detector system. Med Phys. 2022;50(4):2450‐2462. doi:10.1002/mp.16156. ; Liu K, Palmiero A, Chopra N, et al. Dual beam‐current transformer design for monitoring and reporting of electron ultra‐high dose rate (FLASH) beam parameters. J Appl Clin Med Phys. 2023;24(2):1‐15. ; Jorge PG, Grilj V, Bourhis J, et al. Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Med Phys. 2022;49:1831‐1838. ; Oesterle R, Jorge PG, Grilj V, et al. Implementation and validation of a beam‐current transformer on a medical pulsed electron beam LINAC for FLASH‐RT beam monitoring. J Appl Clin Med Phys. 2021;22(11):165‐171. ; Goddu SM, Westphal GT, Sun B, et al. Synchronized high‐speed scintillation imaging of proton beams, generated by a gantry‐mounted synchrocyclotron, on a pulse‐by‐pulse basis. Med Phys. 2022;49(9):6209‐6220. ; Zhou Z, Rao W, Chen Q, et al. A multi‐layer strip ionization chamber (MLSIC) device for proton pencil beam scan quality assurance. Phys Med Biol. 2022;67(17):175006. ; Rahman M, Bruza P, Langen KM, et al. Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements. Phys Med Biol. 2020;65(16):165014. ; Brivio D, Albert S, Gagne MP, Freund E, Sajo E, Zygmanski P. Nanoporous aerogel‐based periodic high‐energy electron current x‐ray sensors. J Phys D: Appl Phys. 2020;53(26):265303. ; Casolaro P, Braccini S, Dellepiane G, Gottstein A, Mateu I. Time‐resolved proton beam dosimetry for ultra‐high dose‐rate cancer therapy (FLASH). In: Proceedings of IBIC2022, Krakow, Poland. 2022. ; Clark M, Ding X, Zhao l, et al. Ultra‐fast, high spatial resolution single‐pulse scintillation imaging of synchrocyclotron pencil beam scanning proton delivery. Phys Med Biol. 2023;68(4):045016. ; Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506(3):250‐303. ; Berger MJ, Coursey JS, Zucker M, Chang J, Seltzer S, Bergstorm P, Stopping‐Power & Range Tables for Electrons, Protons, and Helium Ions. 2017. Accessed 2023. [Online]. https://www.nist.gov/pml/stopping‐power‐range‐tables‐electrons‐protons‐and‐helium‐ions. ; Shibamura E, Saski S, Tran N. Systematic study of inorganic and organic scintillator light yields. In: Proceedings of International Symposium on Radiation Detectors and Their Uses (ISRD2016). 2016. doi:10.7566/JPSCP.11.020004. ; de Haas J, Dorenbos P, van Eijk C. Measuring the absolute light yield of scintillators. Nucl Instrum Methods Phys Res A. 2005;537(1–2):97‐100. ; Commission, International Electrotechnical. BS EN IEC 60601‐2‐1:2021 Medical electrical equipment. Particular requirements for the basic safety and essential performance of electron accelerators in the range 1 MeV to 50 MeV. 2021. [Online]. https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030347404. ; Cornaby S, Kozaczek K. X‐ray sources for handheld x‐ray fluorescence instruments. Encyclopedia of Analytical Chemistry. 1916:1‐25. ; Almmond PR, Biggs PJ, Coursey BM, et al. AAPM's TG‐51 protocol for clinical reference dosimetry of high‐energy photon and electron beams. Med Phys. 1999;26(9):1847‐1870. ; Lewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. 2012;39(10):6339‐6350. ; GafchromicTM EBT‐XD radiotherapy films. Available: https://www.ashland.com/file_source/Ashland/Documents/PHA21‐011_Gafchromic%20EBT‐XD%20Protocol.pdf. ; Ziegler J&ZMBJ. The stopping and range of ions in matter. Methods Phys Res B: Beam Interact Mater At. 2010;268:1818‐1823. ; Bourhis J, Irradiation of Melanoma in a Pulse (IMPulse). August 2021 [Accessed September 2023]. [Online]. https://clinicaltrials.gov/study/NCT04986696?tab=history&a=2. ; Maity A, Koumenis C. Shining a FLASH light on ultrahigh dose rate radiation and possible late toxicity. Clin Cancer Res. 2022;28(17):3636‐3638. ; Sengbusch E, Perez‐Andujar A, DeLuca PM, jr, Mackie TR. Maximum proton kinetic energy and patient‐generated neutron fluence considerations in proton beam arc delivery radiation therapy. Med Phys. 2009;36(2):364‐372. ; Jolly S, Owen H, Schippers M, Welsch C. Technical challenges for FLASH proton therapy. Physica Med. 2020;78:71‐82. ; Schwartz RB, Schrack RA, Heaton HTI. MeV Total Nutron Cross Sections. Department of Commerce; 1974. ; Tsukada K, Tanaka O. Statistical analysis of fast neutron total cross sections of silicon, phosphor, sulfur, and chlorine. J Phys Soc Jpn. 1963;18(5). ; Zhu R‐Y. Radiation damage in scintillating crystals. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip. 1998;413:297‐311. ; Domingo C, Lagares JI, Romero‐Exposito M, et al. Peripheral organ equivalent dose estimation procedure in proton therapy. Front Oncol. 2022;12:882476. ; Birks JB. The Theory and Practice of Scintillation Counting. Pergamon Press; 1964:227. ; Koba Y, Iwamoto H, Kiyohara K, et al. Scintillation efficiency of inorganic scintillators for intermediate‐energy charged particles. J Nucl Sci Technol. 2011;1:218‐221.
  • Grant Information: 1R44CA257178-01A1 NIH National Cancer Institute; DE-SC0019597 DOE Office of Science and Office of Nuclear Physics
  • Contributed Indexing: Keywords: 2D beam imaging; FLASH Therapy; Radiation Therapy; fast real‐time beam monitor; radiation dosimetry
  • Substance Nomenclature: 0 (Protons)
  • Entry Date(s): Date Created: 20240308 Date Completed: 20240405 Latest Revision: 20240405
  • Update Code: 20240405

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -