Zum Hauptinhalt springen

Blueprinting extendable nanomaterials with standardized protein blocks.

Huddy, TF ; Hsia, Y ; et al.
In: Nature, Jg. 627 (2024-03-01), Heft 8005, S. 898-904
Online academicJournal

Titel:
Blueprinting extendable nanomaterials with standardized protein blocks.
Autor/in / Beteiligte Person: Huddy, TF ; Hsia, Y ; Kibler, RD ; Xu, J ; Bethel, N ; Nagarajan, D ; Redler, R ; Leung, PJY ; Weidle, C ; Courbet, A ; Yang, EC ; Bera, AK ; Coudray, N ; Calise, SJ ; Davila-Hernandez, FA ; Han, HL ; Carr, KD ; Li, Z ; McHugh, R ; Reggiano, G ; Kang, A ; Sankaran, B ; Dickinson, MS ; Coventry, B ; Brunette, TJ ; Liu, Y ; Dauparas, J ; Borst, AJ ; Ekiert, D ; Kollman, JM ; Bhabha, G ; Baker, D
Link:
Zeitschrift: Nature, Jg. 627 (2024-03-01), Heft 8005, S. 898-904
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2024
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-024-07188-4
Schlagwort:
  • Crystallography, X-Ray
  • Microscopy, Electron
  • Reproducibility of Results
  • Nanostructures chemistry
  • Proteins chemistry
  • Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2024 Mar; Vol. 627 (8005), pp. 898-904. <i>Date of Electronic Publication: </i>2024 Mar 13.
  • MeSH Terms: Nanostructures* / chemistry ; Proteins* / chemistry ; Proteins* / metabolism ; Crystallography, X-Ray ; Microscopy, Electron ; Reproducibility of Results
  • Comments: Update of: bioRxiv. 2023 Jun 09;:. (PMID: 37333359)
  • References: Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). (PMID: 10.1093/nar/28.1.23510592235102472) ; Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014). (PMID: 10.1126/science.125745225342807) ; Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022). (PMID: 10.1126/science.add1964361080489724707) ; Fallas, J. A. et al. Computational design of self-assembling cyclic protein homo-oligomers. Nat. Chem. 9, 353–360 (2017). (PMID: 10.1038/nchem.267328338692) ; Ljubetič, A. et al. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 35, 1094–1101 (2017). (PMID: 10.1038/nbt.399429035374) ; Hsia, Y. et al. Design of multi-scale protein complexes by hierarchical building block fusion. Nat. Commun. 12, 2294 (2021). (PMID: 10.1038/s41467-021-22276-z338638898052403) ; King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012). (PMID: 10.1126/science.1219364226540604138882) ; Sheffler, W. et al. Fast and versatile sequence-independent protein docking for nanomaterials design using RPXDock. PLoS Comput. Biol. 19, e1010680 (2023). (PMID: 10.1371/journal.pcbi.10106803721634310237659) ; Bethel, N. P. et al. Precisely patterned nanofibres made from extendable protein multiplexes. Nat. Chem. 15, 1664–1671 (2023). ; Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012). (PMID: 10.1038/nchem.1290225222573335442) ; Sinclair, J. C., Davies, K. M., Vénien-Bryan, C. & Noble, M. E. M. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562 (2011). (PMID: 10.1038/nnano.2011.12221804552) ; Ben-Sasson, A.J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021). (PMID: 10.1038/s41586-020-03120-8334084087855610) ; Li, Z. et al. Accurate computational design of three-dimensional protein crystals. Nat. Mater. 22, 1556–1563 (2023). ; Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001). (PMID: 10.1073/pnas.0416149981122621930118) ; Woolfson, D. N. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J. Biol. Chem. 299, 104579 (2023). (PMID: 10.1016/j.jbc.2023.1045793687175810124910) ; Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011). (PMID: 10.1016/j.jmb.2010.08.05820932976) ; Brunette, T. J. et al. Exploring the repeat protein universe through computational protein design. Nature 528, 580–584 (2015). (PMID: 10.1038/nature16162266757294845728) ; Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014). (PMID: 10.1126/science.1257481253428064612401) ; Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017). (PMID: 10.1021/acs.jctc.7b00125284304265717763) ; Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022). (PMID: 10.1126/science.add2187361080509997061) ; Correnti, C. E. et al. Engineering and functionalization of large circular tandem repeat protein nanoparticles. Nat. Struct. Mol. Biol. 27, 342–350 (2020). (PMID: 10.1038/s41594-020-0397-5322034917336869) ; Coxeter, H. S. M. Regular Polytopes (Courier Corp., 1973). ; Yeates, T. O. Geometric principles for designing highly symmetric self-assembling protein nanomaterials. Annu. Rev. Biophys. 46, 23–42 (2017). (PMID: 10.1146/annurev-biophys-070816-03392828301774) ; Walshaw, J. & Woolfson, D. N. Extended knobs-into-holes packing in classical and complex coiled-coil assemblies. J. Struct. Biol. 144, 349–361 (2003). (PMID: 10.1016/j.jsb.2003.10.01414643203) ; Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2005). (PMID: 10.1038/nbt117216369541) ; Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2016). (PMID: 10.1038/nmeth.407427869816) ; Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958). (PMID: 10.1038/181662a013517261) ; Pyles, H., Zhang, S., De Yoreo, J. J. & Baker, D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 571, 251–256 (2019). (PMID: 10.1038/s41586-019-1361-6312925596948101) ; Davila-Hernandez, F. A. et al. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat. Commun. 14, 8191 (2023). (PMID: 10.1038/s41467-023-43608-13809754410721895) ; Kibler, R. D. et al. Stepwise design of pseudosymmetric protein hetero-oligomers. Preprint at bioRxiv https://doi.org/10.1101/2023.04.07.535760 (2023). ; Wintersinger, C. M. et al. Multi-micron crisscross structures grown from DNA-origami slats. Nat. Nanotechnol. 18, 281–289 (2023). (PMID: 10.1038/s41565-022-01283-136543881) ; Bohlin, J., Turberfield, A. J., Louis, A. A. & Šulc, P. Designing the self-assembly of arbitrary shapes using minimal complexity building blocks. ACS Nano 17, 5387–5398 (2023). (PMID: 10.1021/acsnano.2c0967736763807) ; Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018). (PMID: 10.1038/s41467-018-07805-7305608656299139) ; Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021). (PMID: 10.1038/s41563-021-01020-4341278227611604) ; Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017). (PMID: 10.1038/nature2465129219966)
  • Grant Information: P41 GM103310 United States GM NIGMS NIH HHS; S10 OD023476 United States OD NIH HHS; U24 GM129539 United States GM NIGMS NIH HHS
  • Substance Nomenclature: 0 (Proteins)
  • Entry Date(s): Date Created: 20240314 Date Completed: 20240329 Latest Revision: 20240412
  • Update Code: 20240413
  • PubMed Central ID: PMC10972742

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -