Zum Hauptinhalt springen

Integrative multi-omics analysis reveals the crucial biological pathways involved in the adaptive response to NaCl stress in peanut seedlings.

Zhang, N ; Zhang, H ; et al.
In: Physiologia plantarum, Jg. 176 (2024-03-01), Heft 2, S. e14266
Online academicJournal

Titel:
Integrative multi-omics analysis reveals the crucial biological pathways involved in the adaptive response to NaCl stress in peanut seedlings.
Autor/in / Beteiligte Person: Zhang, N ; Zhang, H ; Lv, Z ; Bai, B ; Ren, J ; Shi, X ; Kang, S ; Zhao, X ; Yu, H ; Zhao, T
Link:
Zeitschrift: Physiologia plantarum, Jg. 176 (2024-03-01), Heft 2, S. e14266
Veröffentlichung: Copenhagen : Scandinavian Society For Plant Physiology ; <i>Original Publication</i>: Lund, Sweden [etc.], 2024
Medientyp: academicJournal
ISSN: 1399-3054 (electronic)
DOI: 10.1111/ppl.14266
Schlagwort:
  • Sodium Chloride
  • Multiomics
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Arachis genetics
  • Seedlings genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Physiol Plant] 2024 Mar-Apr; Vol. 176 (2), pp. e14266.
  • MeSH Terms: Arachis* / genetics ; Seedlings* / genetics ; Sodium Chloride ; Multiomics ; Gene Expression Profiling ; Gene Expression Regulation, Plant
  • References: Abbas, G., Rehman, S., Siddiqui, M. H., Ali, H. M., Farooq, M. A. & Chen, Y. (2022) Potassium and Humic Acid Synergistically Increase Salt Tolerance and Nutrient Uptake in Contrasting Wheat Genotypes through Ionic Homeostasis and Activation of Antioxidant Enzymes. Plants (Basel), 11, 263–280. ; Ahmad, A., Niwa, Y., Goto, S., Ogawa, T., Shimizu, M., Suzuki, A., et al. (2015) bHLH106 Integrates Functions of Multiple Genes through Their G‐Box to Confer Salt Tolerance on Arabidopsis. PLoS One, 10, e0126872. ; Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D'Auria, J., Ewald, J., et al. (2021) Mass spectrometry‐based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 18, 747–756. ; Birsa, M. L. & Sarbu, L. G. (2022) An Improved Synthetic Method for Sensitive Iodine Containing Tricyclic Flavonoids. Molecules, 27, 8430–8437. ; Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F. & Morshedloo, M. R. (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311–320. ; Bonku, R. & Yu, J. (2020) Health aspects of peanuts as an outcome of its chemical composition. Food Science and Human Wellness, 9, 21–30. ; Chen, B., Chang, Y., Lin, S. & Yang, W. (2020) Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes. Nature Communications, 11, 5267–5279. ; Considine, M. J. & Foyer, C. H. (2021) Oxygen and reactive oxygen species‐dependent regulation of plant growth and development. Plant Physiology, 186, 79–92. ; Dingkang, W., Ting, M., Jun, H., Rongqing, Z., Yao, J. & Chongde, W. (2022) Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance. Journal of the Science of Food and Agriculture, 102, 6263–6272. ; Eetezaz, N., Tahany, H. & Shyma, M. (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Brazilian Journal of Plant Physiology, 23, 161–174. ; El‐Akhal, M. R., Rincón, A., Peña, T. C. d. l., Lucas, M. M., Mourabit, N. E., Barrijal, S., et al. (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biology, 15, 415–421. ; FAO. (2009) How to Feed the World in 2050. Food and Agriculture Organization of the United Nations. ; Feng, S., Opit, G., Deng, W., Stejskal, V. & Li, Z. (2022) A chromosome‐level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation. GigaScience, 11, 1–10. ; Gill, S. S. & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. ; Heath, R. L. & Packer, L. (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198. ; Ho, T., Murthy, H. N. & Park, S. (2020) Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. International Journal of Molecular Sciences, 21, 716–733. ; Huang, R., Li, H., Gao, C., Yu, W. & Zhang, S. (2023) Advances in omics research on peanut response to biotic stresses. Frontiers in Plant Science, 14, 1101994–1102010. ; Kamiyama, Y., Katagiri, S. & Umezawa, T. (2021) Growth Promotion or Osmotic Stress Response: How SNF1‐Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. Plants (Basel), 10, 1443–1461. ; Katsuta, S., Masuda, G., Bak, H., Shinozawa, A., Kamiyama, Y., Umezawa, T., et al. (2020) Arabidopsis Raf‐like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant Journal, 103, 634–644. ; Khanna, R. R., Jahan, B., Iqbal, N., Khan, N. A., AlAjmi, M. F., Rehman, M. T., et al. (2021) GABA reverses salt‐inhibited photosynthetic and growth responses through its influence on NO‐mediated nitrogen‐sulfur assimilation and antioxidant system in wheat. Journal of Biotechnology, 325, 73–82. ; Kim, C., Kim, S. J., Jeong, J., Park, E., Oh, E., Park, Y.‐I., et al. (2020) High Ambient Temperature Accelerates Leaf Senescence via PHYTOCHROME‐INTERACTING FACTOR 4 and 5 in Arabidopsis. Molecules and Cells, 43, 645–661. ; Kojonna, T., Suttiyut, T., Khunpolwattana, N., Pongpanich, M., Suriya‐Arunroj, D., Comai, L., et al. (2022) Identification of a Negative Regulator for Salt Tolerance at Seedling Stage via a Genome‐Wide Association Study of Thai Rice Populations. International Journal of Molecular Sciences, 23, 1842–1860. ; Liang, W., Ma, X., Wan, P. & Liu, L. (2018) Plant salt‐tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495, 286–291. ; Liaqat, A., Alfatih, A., Jan, S. U., Sun, L., Zhao, P. & Xiang, C. (2023) Transcription elongation factor AtSPT4‐2 positively modulates salt tolerance in Arabidopsis thaliana. BMC Plant Biology, 23, 49–61. ; Liu, H., Able, A. J. & Able, J. A. (2020) Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water‐Deficit and Heat Stress Response Network in Durum Wheat. International Journal of Molecular Sciences, 21, 6017–6044. ; Liu, X., Yu, F., Yang, G., Liu, X. & Peng, S. (2022a) Identification of TIFY gene family in walnut and analysis of its expression under abiotic stresses. BMC Genomics, 23, 190–202. ; Liu, Y., Su, M. & Han, Z. (2022b) Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. Plants (Basel), 11, 3025–3050. ; Lou, D., Wang, H. & Yu, D. (2018) The sucrose non‐fermenting‐1‐related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biology, 18, 203–219. ; Lu, X., Ma, L., Zhang, C., Yan, H., Bao, J., Gong, M., et al. (2022) Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC Plant Biology, 22, 528–549. ; Luo, F., Zhu, D., Sun, H., Zou, R., Duan, W., Liu, J., et al. (2023) Wheat Selenium‐binding protein TaSBP‐A enhances cadmium tolerance by decreasing free Cd2+ and alleviating the oxidative damage and photosynthesis impairment. Frontiers in Plant Science, 14, 1103241–1103257. ; Lv, Z., Zhou, D., Shi, X., Ren, J., Zhang, H., Zhong, C., et al. (2023) The determination of peanut (Arachis hypogaea L.) pod‐sizes during the rapid‐growth stage by phytohormones. BMC Plant Biology, 23, 371–384. ; Ma, S., Lv, L., Meng, C., Zhou, C., Fu, J., Shen, X., et al. (2019) Genome‐Wide Analysis of Abscisic Acid Biosynthesis, Catabolism, and Signaling in Sorghum Bicolor under Saline‐Alkali Stress. Biomolecules, 9, 823–836. ; Matthees, H. L., Thom, M. D., Gesch, R. W. & Forcella, F. (2018) Salinity tolerance of germinating alternative oilseeds. Industrial Crops and Products, 113, 358–367. ; Nadarajah, K. K. (2020) ROS Homeostasis in Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 21, 5208–5236. ; Nishimura, N., Tsuchiya, W., Moresco, J. J., Hayashi, Y., Satoh, K., Kaiwa, N., et al. (2018) Control of seed dormancy and germination by DOG1‐AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 9, 2132–2144. ; Pei, X., Zhang, Y., Zhu, L., Zhao, D., Lu, Y. & Zheng, J. (2021) Physiological and transcriptomic analyses characterized high temperature stress response mechanisms in Sorbus pohuashanensis. Science Report, 11, 10117–10137. ; Qian, G., Wang, M., Wang, X., Liu, K., Li, Y., Bu, Y., et al. (2023) Integrated Transcriptome and Metabolome Analysis of Rice Leaves Response to High Saline‐Alkali Stress. International Journal of Molecular Sciences, 24, 4062–4082. ; Ren, J., Guo, P., Zhang, H., Shi, X., Ai, X., Wang, J., et al. (2022) Comparative physiological and coexpression network analyses reveal the potential drought tolerance mechanism of peanut. BMC Plant Biology, 22, 460–475. ; Ren, Y., Wang, W., He, J., Zhang, L., Wei, Y. & Yang, M. (2019) Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicology and Environmental Safety, 15, 109785–109794. ; Shi, X., Zhao, X., Ren, J., Dong, J., Zhang, H., Dong, Q., et al. (2021) Influence of Peanut, Sorghum, and Soil Salinity on Microbial Community Composition in Interspecific Interaction Zone. Frontiers in Microbiology, 12, 678250–678262. ; Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., et al. (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature, 448, 661–655. ; Wang, D., Wang, K., Sun, S., Yan, P., Lu, X., Liu, Z., et al. (2023) Transcriptome and Metabolome Analysis Reveals Salt‐Tolerance Pathways in the Leaves and Roots of ZM‐4 (Malus zumi) in the Early Stages of Salt Stress. International Journal of Molecular Sciences, 24, 3638–3665. ; Weremczuk‐Jeżyna, I., Hnatuszko‐Konka, K., Lebelt, L. & Grzegorczyk‐Karolak, I. (2021) The Protective Function and Modification of Secondary Metabolite Accumulation in Response to Light Stress in Dracocephalum forrestii Shoots. International Journal of Molecular Sciences, 22, 7965–7980. ; Wu, J., Lv, S., Zhao, L., Gao, T., Yu, C., Hu, J., et al. (2023) Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta, 257, 108–133. ; Xiao, H., Yong, J., Xie, Y. & Zhou, H. (2022) The molecular mechanisms of quality difference for Alpine Qingming green tea and Guyu green tea by integrating multi‐omics. Frontiers in Nutrition, 9, 1079325–1079339. ; Xiao, Y., Niyato, D., Han, Z. & Chen, K. (2014) Secondary Users Entering the Pool: A Joint Optimization Framework for Spectrum Pooling. IEEE Journal on Selected Areas in Communications, 32, 572–588. ; Xu, H., Guo, S., Zhu, L. & Xing, J. (2020) Growth, physiological and transcriptomic analysis of the perennial ryegrass Lolium perenne in response to saline stress. Royal Society Open Science, 7, 200637–200650. ; Yang, J., Duan, G., Li, C., Liu, L., Han, G., Zhang, Y., et al. (2019) The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. Frontiers in Plant Science, 10, 1349–1360. ; Yang, L., Wu, Q., Liang, H., Yin, L. & Shen, P. (2022) Integrated analyses of transcriptome and metabolome provides new insights into the primary and secondary metabolism in response to nitrogen deficiency and soil compaction stress in peanut roots. Frontiers in Plant Science, 13, 948742–948759. ; Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z. & Xia, G. (2020) How Plant Hormones Mediate Salt Stress Responses. Trends in Plant Science, 25, 1117–1130. ; Zamljen, T., Medic, A., Hudina, M., Veberic, R. & Slatnar, A. (2022) Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level. Plants (Basel), 11, 853–870. ; Zelm, E. v., Zhang, Y. & Testerink, C. (2020) Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71, 403–433. ; Zhan, H., Nie, X., Zhang, T., Li, S., Wang, X., Du, X., et al. (2019) Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. International Journal of Molecular Sciences, 20, 709–726. ; Zhang, H., Jiang, C., Ren, J., Dong, J., Shi, X., Zhao, X., et al. (2020a) An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance. Frontiers in Plant Science, 11, 1110–1127. ; Zhang, H., Zhu, W., Feng, X., Jin, J., Wei, A. & Gong, Z. (2020b) Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 21, 444–459. ; Zhang, N., Zhang, H., Ren, J., Bai, B., Guo, P., Lv, Z., et al. (2024) Characterization and Comprehensive Evaluation of Phenotypic and Yield Traits in Salt‐Stress‐Tolerant Peanut Germplasm for Conservation and Breeding. Horticulturae, 10, 147–164. ; Zhang, Y., Gao, X., Li, J., Gong, X., Yang, P., Gao, J., et al. (2019) Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biology, 19, 397–413. ; Zhao, D. Y., Shen, L., Fan, B., Liu, K. L., Yu, M. M., Zheng, Y., et al. (2009) Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. Journal of Food Science and Technology, 74, C348‐352. ; Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C. & Wang, P. (2021) Regulation of Plant Responses to Salt Stress. International Journal of Molecular Sciences, 22, 4609–4624. ; Zhou, Z., Wang, J., Yu, Q. & Lan, H. (2023) Promoter activity and transcriptome analyses decipher functions of CgbHLH001 gene (Chenopodium glaucum L.) in response to abiotic stress. BMC Plant Biology, 23, 116–139. ; Zhu, J., Gong, Z., Zhang, C., Song, C., Damsz, B., Inan, G., et al. (2002) OSM1/SYP61: a Syntaxin Protein in Arabidopsis Controls Abscisic Acid‐Mediated and Non‐Abscisic Acid‐Mediated Responses to Abiotic Stress. The Plant Cell, 14, 3009–3028. ; Zou, Y., Qin, Q., Ma, W., Zhou, L., Wu, Q., Xu, Y., et al. (2023) Metabolomics reveals arbuscular mycorrhizal fungi‐mediated tolerance of walnut to soil drought. BMC Plant Biology, 23, 118–131.
  • Grant Information: 21-110-3-17 Science and Technology Program of Shenyang; 2023JH6/100100041 Central Government Guides the Local Science and Technology Development Special Project; CARS-13 China Agriculture Research System
  • Substance Nomenclature: 451W47IQ8X (Sodium Chloride)
  • Entry Date(s): Date Created: 20240401 Date Completed: 20240403 Latest Revision: 20240403
  • Update Code: 20240403

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -