Zum Hauptinhalt springen

Blimp-1 and c-Maf regulate immune gene networks to protect against distinct pathways of pathobiont-induced colitis.

Alvarez-Martinez, M ; Cox, LS ; et al.
In: Nature immunology, Jg. 25 (2024-05-01), Heft 5, S. 886-901
Online academicJournal

Titel:
Blimp-1 and c-Maf regulate immune gene networks to protect against distinct pathways of pathobiont-induced colitis.
Autor/in / Beteiligte Person: Alvarez-Martinez, M ; Cox, LS ; Pearson, CF ; Branchett, WJ ; Chakravarty, P ; Wu, X ; Slawinski, H ; Al-Dibouni, A ; Samelis, VA ; Gabryšová, L ; Priestnall, SL ; Suárez-Bonnet, A ; Mikolajczak, A ; Briscoe, J ; Powrie, F ; O'Garra, A
Link:
Zeitschrift: Nature immunology, Jg. 25 (2024-05-01), Heft 5, S. 886-901
Veröffentlichung: New York, NY : Nature America Inc. c2000-, 2024
Medientyp: academicJournal
ISSN: 1529-2916 (electronic)
DOI: 10.1038/s41590-024-01814-z
Schlagwort:
  • Animals
  • Mice
  • Humans
  • Helicobacter Infections immunology
  • Mice, Inbred C57BL
  • Intestinal Mucosa immunology
  • Intestinal Mucosa pathology
  • Intestinal Mucosa microbiology
  • Inflammatory Bowel Diseases immunology
  • Inflammatory Bowel Diseases genetics
  • Gene Expression Regulation
  • Disease Models, Animal
  • Positive Regulatory Domain I-Binding Factor 1 genetics
  • Positive Regulatory Domain I-Binding Factor 1 metabolism
  • Proto-Oncogene Proteins c-maf genetics
  • Colitis immunology
  • Colitis genetics
  • Mice, Knockout
  • Helicobacter hepaticus immunology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
  • Language: English
  • [Nat Immunol] 2024 May; Vol. 25 (5), pp. 886-901. <i>Date of Electronic Publication: </i>2024 Apr 12.
  • MeSH Terms: Positive Regulatory Domain I-Binding Factor 1* / genetics ; Positive Regulatory Domain I-Binding Factor 1* / metabolism ; Proto-Oncogene Proteins c-maf* / genetics ; Colitis* / immunology ; Colitis* / genetics ; Mice, Knockout* ; Helicobacter hepaticus* / immunology ; Animals ; Mice ; Humans ; Helicobacter Infections / immunology ; Mice, Inbred C57BL ; Intestinal Mucosa / immunology ; Intestinal Mucosa / pathology ; Intestinal Mucosa / microbiology ; Inflammatory Bowel Diseases / immunology ; Inflammatory Bowel Diseases / genetics ; Gene Expression Regulation ; Disease Models, Animal
  • References: Fang, D. & Zhu, J. Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cell. Mol. Life Sci. 77, 289–303 (2019). (PMID: 3143223610.1007/s00018-019-03277-0) ; Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu Rev. Immunol. 27, 313–338 (2009). (PMID: 1930204310.1146/annurev.immunol.021908.132657) ; Neumann, C., Scheffold, A. & Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 44, 101344 (2019). (PMID: 3172746510.1016/j.smim.2019.101344) ; Ouyang, W. & O’Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic xcience to clinical translation. Immunity 50, 871–891 (2019). (PMID: 3099550410.1016/j.immuni.2019.03.020) ; Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020). (PMID: 3161125110.1084/jem.20190418) ; Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). (PMID: 840291110.1016/0092-8674(93)80068-P) ; Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998). (PMID: 978452610865210.1128/IAI.66.11.5224-5231.1998) ; Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998). (PMID: 978451710864310.1128/IAI.66.11.5157-5166.1998) ; Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200, 1289–1297 (2004). (PMID: 15534372221191210.1084/jem.20041789) ; Engelhardt, K. R. & Grimbacher, B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol. 380, 1–18 (2014). (PMID: 25004811) ; Uhlig, H. H. & Powrie, F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu. Rev. Immunol. 36, 755–781 (2018). (PMID: 2967747210.1146/annurev-immunol-042617-053055) ; Ellinghaus, D. et al. Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology 145, 339–347 (2013). (PMID: 2362410810.1053/j.gastro.2013.04.040) ; Gabrysova, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4 + T cells. Nat. Immunol. 19, 497–507 (2018). (PMID: 29662170598804110.1038/s41590-018-0083-5) ; Zhang, H. et al. An IL-27-driven transcriptional network identifies regulators of IL-10 expression across T helper cell subsets. Cell Rep. 33, 108433 (2020). (PMID: 33238123777105210.1016/j.celrep.2020.108433) ; Cox, L. S. et al. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res. 8, 403 (2023). (PMID: 380741971070969010.12688/wellcomeopenres.19680.2) ; Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012). (PMID: 23021777350348710.1016/j.cell.2012.09.016) ; Neumann, C. et al. c-Maf-dependent T reg cell control of intestinal T H 17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019). (PMID: 3077824110.1038/s41590-019-0316-2) ; Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018). (PMID: 29414937581434610.1038/nature25500) ; Imbratta, C. et al. Maf deficiency in T cells dysregulates T reg –T H 17 balance leading to spontaneous colitis. Sci. Rep. 9, 6135 (2019). (PMID: 30992496646801010.1038/s41598-019-42486-2) ; Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008). (PMID: 1868492310.4049/jimmunol.181.4.2338) ; Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006). (PMID: 1656572010.1038/ni1321) ; Martins, G. A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008). (PMID: 18725523252619110.1084/jem.20080526) ; Salehi, S. et al. Blimp-1 contributes to intestinal mucosa homeostasis by limiting the number of IL17-producing CD4 + T cells. J. Immunol. 189, 5682–5693 (2012). (PMID: 2316213010.4049/jimmunol.1201966) ; Heinemann, C. et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4 + T cells by inducing Blimp1. Nat. Commun. 5, 3770 (2014). (PMID: 2479671910.1038/ncomms4770) ; Ogawa, C. et al. Blimp-1 functions as a molecular switch to prevent inflammatory activity in Foxp3 + RORγt + regulatory T cells. Cell Rep. 25, 19–28.e5 (2018). (PMID: 30282028623754810.1016/j.celrep.2018.09.016) ; Bankoti, R. et al. Differential regulation of effector and regulatory T cell function by Blimp1. Sci. Rep. 7, 12078 (2017). (PMID: 28935958560871410.1038/s41598-017-12171-3) ; Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009). (PMID: 1941477610.4049/jimmunol.0900123) ; Aschenbrenner, D. et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 70, 1023–1036 (2021). (PMID: 3303705710.1136/gutjnl-2020-321731) ; Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021). (PMID: 34675383860473010.1038/s41591-021-01520-5) ; Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). (PMID: 29590092604774110.1038/nature25986) ; Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304 (2011). (PMID: 2137897610.1038/ni.2006) ; Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). (PMID: 1983308910.1016/j.immuni.2009.08.020) ; Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). (PMID: 19836068279682610.1016/j.cell.2009.09.033) ; Gu, Y. et al. Intestinal lamina propria supports acquired eTreg suppressor function. Preprint at https://doi.org/10.1101/2022.08.26.505428 (2023). ; Kullberg, M. C. et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203, 2485–2494 (2006). (PMID: 17030948211811910.1084/jem.20061082) ; Maloy, K. J. et al. CD4 + CD25 + T R cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003). (PMID: 12515818219379810.1084/jem.20021345) ; Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014). (PMID: 25073792414474410.1084/jem.20131548) ; Argmann, C. et al. Biopsy and blood-based molecular biomarker of inflammation in IBD. Gut 72, 1271–1287 (2023). (PMID: 3610915210.1136/gutjnl-2021-326451) ; Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020). (PMID: 32103191787136610.1038/s41586-020-2025-2) ; Ahlers, J. et al. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn’s disease patients. Mucosal Immunol. 15, 480–490 (2022). (PMID: 35169232903852510.1038/s41385-022-00487-x) ; Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RB hi CD4 + T cells. Immunity 1, 553–562 (1994). (PMID: 760028410.1016/1074-7613(94)90045-0) ; Griseri, T. et al. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote Interleukin-23 driven chronic colitis. Immunity 43, 187–199 (2015). (PMID: 26200014451850010.1016/j.immuni.2015.07.008) ; McGeachy, M. J. & Cua, D. J. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin. Immunol. 19, 372–376 (2007). (PMID: 1831905410.1016/j.smim.2007.10.012) ; Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000). (PMID: 1111438310.1016/S1074-7613(00)00070-4) ; Rutz, S. et al. Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in T H 17 cells. Nat. Immunol. 12, 1238 (2011). (PMID: 2200182810.1038/ni.2134) ; West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23, 579–589 (2017). (PMID: 28368383542044710.1038/nm.4307) ; Harrington, L. E. et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005). (PMID: 1620007010.1038/ni1254) ; Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018). (PMID: 3056687910.1016/j.immuni.2018.12.001) ; Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015). (PMID: 25924064449898410.1038/nature14452) ; van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced T reg cells. Immunity 55, 1173–1184.e7 (2022). (PMID: 35700740988588610.1016/j.immuni.2022.05.010) ; Singhania, A. et al. Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nat. Commun. 10, 2887 (2019). (PMID: 31253760659904410.1038/s41467-019-10601-6) ; Wende, H. et al. The transcription factor c-Maf controls touch receptor development and function. Science 335, 1373–1376 (2012). (PMID: 2234540010.1126/science.1214314) ; Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688) ; Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinf. 15, 182 (2014). (PMID: 10.1186/1471-2105-15-182) ; Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012). (PMID: 24832523400980510.3390/biology1030895) ; Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635) ; Hartley, S. W. & Mullikin, J. C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-seq experiments. BMC Bioinf. 16, 224 (2015). (PMID: 10.1186/s12859-015-0670-5) ; Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8) ; Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology https://bioconductor.org/packages/topGO (2010). ; Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013). ; Picard toolkit (Broad Institute, 2018); http://broadinstitute.github.io/picard. ; Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352) ; Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137) ; Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-seq peak data (Bioconductor, 2011); http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf. ; Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014). (PMID: 25150836440430810.1038/nbt.2931) ; Gontarz, P. et al. Comparison of differential accessibility analysis strategies for ATAC-seq data. Sci. Rep. 10, 10150 (2020). (PMID: 32576878731146010.1038/s41598-020-66998-4) ; Yin, T., Cook, D. & Lawrence, M. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol. 13, R77 (2012). (PMID: 22937822405374510.1186/gb-2012-13-8-r77) ; Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016). (PMID: 2710248410.1126/science.aad2035) ; Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170) ; Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 19261174269099610.1186/gb-2009-10-3-r25) ; Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048) ; McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019). (PMID: 30954475685361210.1016/j.cels.2019.03.003) ; Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107.e17 (2018). (PMID: 2947490910.1016/j.cell.2018.02.001) ; Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021). (PMID: 33597522788987110.1038/s41467-021-21246-9) ; Palmer, N. P. et al. Concordance between gene expression in peripheral whole blood and colonic tissue in children with inflammatory bowel disease. PLoS One 14, e0222952 (2019). (PMID: 31618209679542710.1371/journal.pone.0222952) ; Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008). (PMID: 10.1186/1471-2105-9-559)
  • Grant Information: United Kingdom WT_ Wellcome Trust; FC001126 United Kingdom ARC_ Arthritis Research UK; FC001126 United Kingdom WT_ Wellcome Trust
  • Substance Nomenclature: EC 2.1.1.- (Positive Regulatory Domain I-Binding Factor 1) ; 0 (Proto-Oncogene Proteins c-maf) ; 0 (Prdm1 protein, mouse) ; 0 (Maf protein, mouse)
  • Entry Date(s): Date Created: 20240412 Date Completed: 20240502 Latest Revision: 20240522
  • Update Code: 20240522
  • PubMed Central ID: PMC11065689

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -