Zum Hauptinhalt springen

Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI.

Nosrati, R ; Calakli, F ; et al.
In: Investigative radiology, 2024-06-10
academicJournal

Titel:
Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI.
Autor/in / Beteiligte Person: Nosrati, R ; Calakli, F ; Afacan, O ; Pelkola, K ; Nichols, R ; Connaughton, P ; Bedoya, MA ; Tsai, A ; Bixby, S ; Warfield, SK
Zeitschrift: Investigative radiology, 2024-06-10
Veröffentlichung: Ahead of Print, 2024
Medientyp: academicJournal
ISSN: 1536-0210 (electronic)
DOI: 10.1097/RLI.0000000000001092
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Invest Radiol] 2024 Jun 10. <i>Date of Electronic Publication: </i>2024 Jun 10.
  • References: CR-SAR-SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the abdomen. Am Coll Radiol. Published online 2020. ; CR-SAR-SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the liver. Am Coll Radiol. Published online 2020. ; Statistica. Number of examinations with magnetic resonance imaging (MRI) in selected countries as of 2019. 2020. Available at: https://www.statista.com/statistics/271470/mri-scanner-number-of-examinations-in-selected-countries/. Accessed July 21, 2022. ; Rinck PA. Facts and figures: organ distribution of MRI studies - number of MRI machines worldwide - field strength of MRI machines. Last update October 2018 | MRI NMR Magnetic Resonance • Essentials, introduction, basic principles, facts, history | The primer of EMRF/TRTF. In: Magnetic Resonance. 12th ed. vol. 21. BoD; 2018:1–8. ; Duffy PB, Stemmer A, Callahan MJ, et al. Free-breathing radial stack-of-stars three-dimensional Dixon gradient echo sequence in abdominal magnetic resonance imaging in sedated pediatric patients. Pediatr Radiol. 2021;51:1645–1653. ; Kirchgesner T, Perlepe V, Michoux N, et al. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence. Eur J Radiol. 2017;89:40–46. ; Kirchgesner T, Perlepe V, Michoux N, et al. Fat suppression at three-dimensional T1-weighted MR imaging of the hands: Dixon method versus CHESS technique. Diagn Interv Imaging. 2018;99:23–28. ; Kishida Y, Koyama H, Seki S, et al. Comparison of fat suppression capability for chest MR imaging with Dixon, SPAIR and STIR techniques at 3 tesla MR system. Magn Reson Imaging. 2018;47:89–96. ; Grande F Del, Santini F, Herzka DA, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014;34:217–233. ; Wendl CM, Eiglsperger J, Dendl L-M, et al. Fat suppression in magnetic resonance imaging of the head and neck region: is the two-point DIXON technique superior to spectral fat suppression? Br J Radiol. 2018;91:20170078. ; Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28:543–558. ; Huijgen WHF, van Rijswijk CSP, Bloem JL. Is fat suppression in T1 and T2 FSE with mDixon superior to the frequency selection-based SPAIR technique in musculoskeletal tumor imaging? Skeletal Radiol. 2019;48:1905–1914. ; Cheng JY, Zhang T, Ruangwattanapaisarn N, et al. Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging. 2015;42:407–420. ; Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process. 2003;51:560–574. ; Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000;43:682–690. ; Hernando D, Kellman P, Haldar JP, et al. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79–90. ; Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization—application in breathhold liver imaging at 1.5 T. Magn Reson Med. 2012;67:1684–1693. ; Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed. 2011;24:1129–1136. ; Lin CY, Fessler JA. Efficient regularized field map estimation in 3D MRI. IEEE Trans Comput Imaging. 2020;6:1451–1458. ; Berglund J, Skorpil M. Multi-scale graph-cut algorithm for efficient water-fat separation. Magn Reson Med. 2017;78:941–949. ; Benkert T, Feng L, Sodickson DK, et al. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med. 2017;78:565–576. ; Hu HH, Börnert P, Hernando D, et al. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med. 2012;68:378–388. ; Dunlavy D, Acar E, Kolda T. Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization; 2010:SAND2010-1422, 989350. doi:10.2172/989350. ; Pech-Pacheco JL, Cristobal G, Chamorro-Martinez J, Fernandez-Valdivia J. Diatom autofocusing in brightfield microscopy: a comparative study. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. 3; 2000:314–317. doi:10.1109/ICPR.2000.903548. ; Kataria B. Visual Grading Evaluation of Reconstruction Methods and Dose Optimisation in Abdominal Computed Tomography. Vol 1683. Linköping University Electronic Press; 2019. doi:10.3384/diss.diva-160928. ; Likert R. A technique for the measurement of attitudes. Arch Psychol. 1932;22:55–55, 141. ; Cui Y. Fast absolute quantification of in vivo water and fat content with magnetic resonance imaging. Published online 2012. http://ir.lib.uwo.ca/etd/1040. ; Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–194. ; Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med. 1991;18:371–383. ; Berglund J, Johansson L, Ahlström H, et al. Three-point Dixon method enables whole-body water and fat imaging of obese subjects. Magn Reson Med. 2010;63:1659–1668. ; Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed. 2011;24:784–790. ; Wang X, Hernando D, Reeder SB. Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR Spectrum. Magn Reson Med. 2016;75:845–851. ; Yu H, Shimakawa A, McKenzie CA, et al. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–1134. ; Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, et al. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease. PLoS One. 2013;8:e81093. ; Budjan J, Riffel P, Ong MM, et al. Rapid Cartesian versus radial acquisition: comparison of two sequences for hepatobiliary phase MRI at 3 tesla in patients with impaired breath-hold capabilities. BMC Med Imaging. 2017;17:32. ; Azevedo RM, De Campos ROP, Ramalho M, et al. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–657. ; Bamrungchart S, Tantaway EM, Midia EC, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–1577. ; Chandarana H, Block TK, Rosenkrantz AB, et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol. 2011;46:648–653. ; Kataoka M, Ueda H, Koyama T, et al. Contrast-enhanced volumetric interpolated breath-hold examination compared with spin-echo T1-weighted imaging of head and neck tumors. Am J Roentgenol. 2005;184:313–319. ; Park JE, Choi YH, Cheon JE, et al. Three-dimensional radial VIBE sequence for contrast-enhanced brain imaging: an alternative for reducing motion artifacts in restless children. Am J Roentgenol. 2018;210:876–882. ; Feng L, Axel L, Chandarana H, et al. XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2016;75:775–788. ; Grimm R, Fürst S, Dregely I, et al. Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems. Med Image Comput Comput Assist Interv. 2013;16(Pt 3):17–24. ; Chandarana H, Feng L, Ream J, et al. Respiratory motion-resolved compressed sensing reconstruction of free-breathing radial acquisition for dynamic liver magnetic resonance imaging. Invest Radiol. 2015;50:749–756. ; Zhang T, Cheng JY, Potnick AG, et al. Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging. 2015;41:460–473. ; Forman C, Piccini D, Grimm R, et al. Reduction of respiratory motion artifacts for free-breathing whole-heart coronary MRA by weighted iterative reconstruction. Magn Reson Med. 2015;73:1885–1895. ; Basty N, Thanaj M, Cule M, et al. Artifact-free fat-water separation in Dixon MRI using deep learning. J Big Data. 2023;10:4. ; Sharma SD, Artz NS, Hernando D, et al. Improving chemical shift encoded water-fat separation using object-based information of the magnetic field inhomogeneity. Magn Reson Med. 2015;73:597–604.
  • Entry Date(s): Date Created: 20240610 Latest Revision: 20240610
  • Update Code: 20240611

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -