Zum Hauptinhalt springen

Investigations on Enhancing Thermomagnetic Properties in CoxZn1−xFe2O4

Mohamed, Ashraf M. ; Hemeda, O. M. ; et al.
In: Journal of Superconductivity and Novel Magnetism, Jg. 33 (2020-05-16), S. 2753-2757
Online unknown

Investigations on Enhancing Thermomagnetic Properties in CoxZn1−xFe2O4 

The effect of Co content on magnetocaloric effect (MCE) in CoxZn1−xFe2O4 (CZF) with x = 0, 0.1, 0.2, 0.3, and 0.4, prepared by auto-combustion technique, has been investigated by phenomenological model. The results show that MCE for CZF nanoparticles is enhanced strongly with Co content especially for high Co content samples. In addition, MCE in CZF nanoparticles is tunable with Co content over a large operating temperature range. MCE of CZF nanoparticles are significantly better than MCE of Ni58Fe26Ga28, MnAs films, and Ge0.95Mn0.05. It is recommended that that MCE in CZF nanoparticles is favorable for magnetic refrigeration in a wide temperature range, including room temperature.

Keywords: Magnetocaloric effect; CoxZn1−xFe2O4; Phenomenological model

Introduction

The ferrites have considerable scientific and technological attention due to their significant electrical and magnetic properties [[1]–[8]]. These properties of ferrites are widely used in numerous applications like information storage, gas sensors, communication, magnetic resonance imaging, magnetic switch, and magnetic refrigerator (MR) [[9]–[15]]. For these applications, the ferrites cannot be replaced by other magnetic materials for economic reasons. Among these ferrite materials, ZnFe2O4 is soft magnetic material which has a small coercivity, relatively high magnetization, and low dielectric loss [[16]–[18]]. Therefore, there is interest in improving the properties of ZnFe2O4 to increase the efficiency of these applications by doping [[19]–[22]]. There is a tendency to use MR in the cooling process, depending on the magnetocaloric effect (MCE) [[23]–[27]]. MCE is described as a change in temperature by removing or application of the magnetic field on a magnetic material [[28]–[30]]. This MR is distinguished from the traditional refrigerators as they have less pollution to the environment, more efficient cooling, and less electricity consumption [[31]–[35]]. Feng et al. reported Co doping effect on magnetic behavior for CoxZn1−xFe2O4 (CZF) nanoparticles with x = 0, 0.1, 0.2, 0.3, and 0.4 were prepared by auto-combustion method, showing the substitution of cobalt ions can remarkably enhance Curie temperature (TC) of the prepared CZF nanoparticles [[19]]. Furthermore, at room temperature, CZF nanoparticles show superparamagnetism for low cobalt content samples, while high cobalt content samples show ferrimagnetism [[19]]. This gives us a motivation to study Co doping effect on the thermomagnetic properties of the material using the phenomenological model (PM) which simulates the magnetization-temperature curves, concluding magnetic entropy change (∆SM), heat capacity change (ΔCP,H), and relative cooling power (RCP).

Theoretical Considerations

According to PM, described in [[36]–[39]], the dependence of magnetization on the temperature and TC is given by

1 M=MiMF2tanhATcT+BT+C

Graph

where Mi is an initial value of magnetization at ferrimagnetic-paramagnetic transition and Mf is a final value of magnetization at ferrimagnetic-paramagnetic transition as shown in Fig. 1, where =2BScMiMf , B is the average magnetization sensitivity ( dMdT ) at ferrimagnetic state before transition, Sc is magnetization sensitivity dMdT at TC, and C=Mi+Mf2BTC .

Graph: Fig. 1 Temperature dependence of magnetization in constant applied field

ΔSM of a magnetic sample under adiabatic magnetic field shift (∆H) from 0 to final value Hmax is available by

2 ΔSM=AMiMf2sech2ATCT+BHmax

Graph

A maximum of ΔSM (∆SMax) can be determined as follows:

3 ΔSMax=HmaxAMiMf2+B

Graph

The full-width at half-maximum (δTFWHM) can be obtained as follows:

4 δTFWHM=2Acosh12AMiMfAMiMf+2B

Graph

RCP can be given as follows:

5 RCP=ΔSMaxTHmax×δTFWHM=MiMf2BAHmax×cosh12AMiMfAMiMf+2B

Graph

According to the PM model [[35]], Δ CP, H is given by

6 ΔCP,H=TA2MiMfsech2ATCTtanhATCTHmax

Graph

Results and Discussion

To simulate MCE, the phenomenological parameters for CZF nanoparticles were determined directly from experimental data (temperature dependence of magnetization) as in Ref. [[19]]. Figure 2 shows the temperature dependence of magnetization for CZF. The symbols represent experimental data from Ref. [[19]], while the solid lines represent simulated data by PM. We can see from Fig. 2 that there is a good agreement between the experimental and the theoretical results of M(T), confirming a good fitting of this model. This work demonstrates the good coincidence between the experimental data and the continuous curves given by PM, indicating that this model allows us to predict MCE for CZF nanoparticles under moderate magnetic field. The M(T) curves reveal that all the samples are showing a magnetic transition from the ferrimagnetic to paramagnetic state. Furthermore, the high cobalt content enhances remarkably the magnetization and consequently a rise in TC. This behavior indicates that the cobalt content has a strong effect on MCE of CZF nanoparticles. This a rise in TC with cobalt content due to the replacement of non-magnetic Zn2+ ions with magnetic Co2+ ions, leading to strengthening the exchange interaction between A site and B site [[40]]. Figures 3 and 4 show simulated temperature dependence of ∆SM and ∆CP,H for CZF nanoparticles, respectively. The behavior of ∆SM and ∆CP,H curves proposes how to expand the range of temperatures for exploiting CZF nanoparticles in the MR. It is clear that ∆SM and ∆CP,H peaks of CZF nanoparticles extend over a large temperature range. Figures 5, 6, 7, and 8 show the values of |∆SMax| (maximum value of |∆SM|), δTFWHM, RCP, and ∆CP,H(Max) (maximum value of ∆CP,H) for CZF nanoparticles, respectively. It is clear that |∆SMax|, RCP, and ∆CP,H(max) show a systematic increase with increase in Co content up to x = 0.30.

Graph: Fig. 2 Magnetization vs. temperature for CZF nanoparticles. The dashed curves are modeled results and symbols represent experimental data from Ref. [19]

Graph: Fig. 3 ∆SM vs. temperature for CZF nanoparticles

Graph: Fig. 4 ∆CP,H vs. temperature for CZF nanoparticles

Graph: Fig. 5 |∆SMax| vs. temperature for CZF nanoparticles

Graph: Fig. 6 δTFWHM vs. Co content for CZF nanoparticles

Graph: Fig. 7 RCP vs. Co content for CZF nanoparticles

Graph: Fig. 8 ∆CP,H(max) vs. Co content for CZF nanoparticles

This is due to when the non-magnetic Zn2+ ions are replaced with magnetic Co2+ ions, the super-exchange interaction among A–B intra-sublattice is enhanced. Since Co2+ prefers to occupy B sites while Zn2+ prefers to occupy A sites. When the Zn2+ ions (magnetic moment of 0 μB) are substituted with Co2+ ions (magnetic moment of 3 μB), the magnetic Fe3+ ions (magnetic moment of 5 μB) are moved from B sites to A sites, leading to increase remarkably the total magnetic moments at the A sites and causing an increase in super-exchange interaction among A–B [[40]]. These results show that MCE in CZF nanoparticles is tunable, which is leading to recommend that MCE in CZF nanoparticles is beneficial for MR in wide temperature range, including room temperature. Furthermore, the eddy current loss and hysteresis energy loss are not considered for CZF nanoparticles due to high resistivity and very small hysteresis of CZF nanoparticles [[40]].

Table 1 shows comparisons between CZF nanoparticles and other compositions in previous works. The MCE parameters of CZF nanoparticles are significantly larger and comparable with some MCE parameters of Ni58Fe26Ga28, MnAs films, and Ge0.95Mn0.05, Gd3Ni2, Gd3CoNi, and La0.67Sr0.33MnO3 nanofibers as shown in Table 1 [[41]–[45]]. Finally, MCE and electrocaloric effect give the perspectives of practical applications of modern refrigeration technology in our society [[46]–[75]].

The predicted values of applied magnetocaloric properties for CZF nanoparticles and other compositions in low applied magnetic field changes

Composition

∆H (T)

−∆SMax (J/kg K)

δTFWHM (K)

RCP (J/kg)

CP,H(Max) (J/kg K)

Ref.

CZF nanoparticles

0.02

6E−4 to 7.4E−3

83–346

0.2–0.7

1.57E−4 to 4.5E−2

This work

Gd1−xCaxBaCo2O5.5

0.1

1.65E−6 to 2.2E−6

9.77–13.85

1.61E−5 to 3.04E−5

6.14E−5 to 6.34E−5

[41]

Ge0.95Mn0.05 Films

0.1

4E−7 to 3.6E−6

12.69–17.75

6.3E−6 to 0.451E−5

7.7E−6 to 1.1E−4

[42]

Ni58Fe26Ga28

0.2–0.5

0.005–0.013

42–73

0.19–0.94

0.04–0.07

[43]

Gd3Ni2

0.02

0.009

12.03

0.108

[44]

Gd3CoNi

0.02

0.022

12.11

0.266

[44]

La0.67Sr0.33MnO3 nanofibers

0.02

0.04

30.8

1.233

0.605

[45]

In conclusion, MCE for CZF nanoparticles with different Co contents is investigated theoretically by PM. MCE for CZF nanoparticles is enhanced with Co content. Furthermore, MCE in CZF nanoparticles is tunable with Co content and continues in high temperature range.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References 1 Cavas, M, Alahmed, Z.A, Albrithen, H.A, & Yakuphanoglu, F: J. Electroceram. 32, 163 (2014) 2 El-Sayed, A.H, Hemeda, O.M, Tawfik, A, Hamad, M.A: Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv. 5, 107131 (2015) 3 Hemeda, O.M, Henaish, A.M.A, Mansour, S.F, Sharshar, T, Hamad, M.A: Electrical properties and positron annihilation studies of nano-crystalline CoLaxFe2−xO4 prepared by ceramic method. Appl. Phys. A Mater. Sci. Process. 126, 141 (2020) 4 Mahmood, A, Ramay, S.M, Al-Zaghayer, Y.S, AlHazaa, A.A.N, Al Masary, W.A, Atiq, S: Desalination and Water Treatment 57, 20069 (2016) 5 Hemeda OM, Mahmoud KR, Sharshar T, Elsheshtawy M, Hamad MA. J. Magn. Magn. Mater. 2017; 429: 1242017JMMM.429.124H. 10.1016/j.jmmm.2017.01.018 6 El-Sayed, A.H, Hemeda, O.M, Tawfik, A, Hamad, M.A: Superior values of the initial permeability for electrodeposited Ni–Co–P-BaFe12O19 composite films. Phase Trans. 90, 325–334 (2017) 7 Salem, B.I, Hemeda, O.M, Mansour, S.F, & Hamad, M.A: Electrical properties and positron annihilation studies for LaxCoFe2-xO4. Appl. Phys. A Mater. Sci. Process. 124, 621 (2018) 8 El-Sayed AH, Hemeda OM, Tawfik A, Hamad MA. J. Magn. Magn. Mater. 2016; 402: 1052016JMMM.402.105E. 10.1016/j.jmmm.2015.11.051 9 Tawfik, A, Hemeda, O.M, El-Sayed, A.H, Hamad, M.A: Initial magnetic permeability of M type BaFe12O19-polystyrene composite. J. Supercond. Nov. Magn. 4, 2085–2088 (2016) Hemeda, O.M, Henaish, A.M.A, Salem, B.I, El-Sbakhy, F.S, Hamad, M.A: Appl. Phys. A Mater. Sci. Process. 126, 121 (2020) Pullar RC. Prog. Mater. Sci. 2012; 57; 7: 1191-1334. 10.1016/j.pmatsci.2012.04.001 El-Sayed, A.H, Hemeda, O.M, Tawfik, A, & Hamad, M.A: Simulation of Wasp-Waisted Magnetic Hysteresis Loop for NiCoP Coated BaFe 12 O 19–Polystyrene Bilayer Composite Film. J.Supercond. Nov. Magn. 29, 2451–2453 (2016) Mahmoud, K.R, Hemeda, O.M, Sharshar, T, & Hamad, M.A: Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn0.9-xFe2O4 Ceramics. M.A. J. Supercond. Nov. Magn 30, 3143–3154 (2017) Hamad, M.A, El-Sayed, A.H, Hemeda, O.M, et al: Mater Res Exp. 3, 036104 (2016) Hemeda, O.M, El-Sayed, A.H, Tawfik, A, Hamad, M.A: Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles. Mater. Res. Exp. 3, 075302 (2016) Zhou X, Li X, Sun H, Sun P, Liang X, Liu F, Hu X, Lu G. ACS Appl.Mater.Interfaces. 2015; 7: 15414. 10.1021/acsami.5b03537 Yuan ZH. J. Mater. Chem. 2001; 11: 1265. 10.1039/b006994i Veldurthi NK, Eswar NK, Singh SA, Madras G. Catal. Sci. Technol. 2018; 8: 1083. 10.1039/C7CY02281F Feng J, Xiong R, Liu Y, Su F, Zhang X. J. Mater. Sci. – Mater. El. 2018; 29: 18358. 10.1007/s10854-018-9950-y Chen KT, Chen HY, Tsai CJ. Electrochim. Acta. 2019; 319: 577. 10.1016/j.electacta.2019.06.137 Zhang, W, Shen, Y, Zhang, J, Bi, H, Zhao, S, Zhou, P,. & Cheng, N, Appl. Surf. Sci. 470 (2019) 581 Hakimyfard A, Mohammadi S. Adv. Powder Technol. 2019; 30: 1257. 10.1016/j.apt.2019.04.005 Taskaev S, Skokov K, Karpenkov D, Khovaylo V, Ulyanov M, Bataev D, Pellenen A, Fazlitdinova A, Gutfleisch O. J.Magn. Magn. Mater. 2017; 442: 3602017JMMM.442.360T. 10.1016/j.jmmm.2017.06.077 Phong PT, Duy LT, Bau LV, Dang NV, Manh DH, Lee I-J. J. Electroceram. 2016; 36: 58. 10.1007/s10832-016-0026-1 Weise B, Sellschopp K, Bierdel M, Funk A, Bobeth M, Krautz M, Waske A. J. Appl. Physiol. 2016; 120: 1251032016JAP.120l5103W. 10.1063/1.4962972 Mahfoudh N, Koubaa M, Koubaa WC, Cheikhrouhou A. J. Electroceram. 2014; 32: 224. 10.1007/s10832-013-9877-x Gottschall T, Kuz'Min MD, Skokov KP, Skourski Y, Fries M, Gutfleisch O. Wosnitza. Phys. Rev. B. 2019; 99: 1344292019PhRvB.99m4429G. 10.1103/PhysRevB.99.134429 Zaidi, M.A, Dhahri, J, Zeydi, I, Alharbi, T, Belmabrouk, H: RSC Adv. 7, 43590 (2017) Alzahrani, B, Hsini, M, Hcini, S, Boudard, M, Dhahri, A, Bouazizi, M.L: Study of the Magnetocaloric Effect by Means of Theoretical Models in La0. 6Ca0. 2Na0. 2MnO3 Manganite Compound. J. Low Temp. Phys (2020). 10.1007/s10909-020-02455-w Owolabi, T.O, Akande, K.O, Olatunji, S.O, Alqahtani, A, Aldhafferid, N: Soft Computing. 22, 3023 (2018) Hamad MA. Process. Appl. Ceram. 2015; 9: 11. 10.2298/PAC1501011H Phan MH, Yu SC. J.Magn. Magn. Mater. 2007; 308: 3252007JMMM.308.325P. 10.1016/j.jmmm.2006.07.025 Bourouina M, Krichene A, Chniba Boudjada N, Khitouni M, Boujelben W. Ceram. Int. 2017; 43: 8139. 10.1016/j.ceramint.2017.03.138 Dhahri A, Dhahri E, Hlil EK. Applied Physics A. 2014; 116: 2077. 10.1007/s00339-014-8404-5 Dhahri A, Jemmali M, Dhahri E, Valente MA. J.Alloy Compd. 2015; 638: 221. 10.1016/j.jallcom.2015.01.314 Hamad MA. J. Supercond. Nov. Magn. 2015; 28: 3111-3115. 10.1007/s10948-015-3140-4 Hamad MA. Process. Appl. Ceram. 2016; 10: 33. 10.2298/PAC1601033H Hamad MA. Int. J. Thermophys. 2015; 36: 27482015IJT.36.2748H. 10.1007/s10765-015-1960-x El-Sayed AH, Hamad MA. J.Supercond.Nov.Magn. 2018; 31: 3357. 10.1007/s10948-018-4605-z Anh LN, Loan TT, Duong NP, Nguyet DTT, Hien TD. Anal. Lett. 2015; 48: 1965. 10.1080/00032719.2014.1003430 Hamad MA. Mater. Lett. 2012; 82: 181. 10.1016/j.matlet.2012.05.088 Hamad MA. J. Supercond. Nov. Magn. 2013; 26: 449. 10.1007/s10948-012-1762-3 El-Sayed AH, Hamad MA. J. Supercond. Nov. Magn. 2018; 31: 1895. 10.1007/s10948-017-4413-x Hsini M, Boutaleb M. Eur. Phys. J. Plus. 2020; 135: 186. 10.1140/epjp/s13360-020-00105-4 El-Sayed AH, Hemeda OM, Hamad MA, Mohamed AM. Eur. Phys. J. Plus. 2019; 134: 227. 10.1140/epjp/i2019-12751-6 Hamad, M.A: J. Supercond. Nov. Magn. 28, 3365 (2015) Hamad, M.A: Theoretical investigations on electrocaloric properties of PbZr0.95Ti0.05O3 thin film. Int. J. Thermophys. 34, 1158–1165 (2013) Hamad, M.A: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3−0.1PbTiO3 thin film. J. Comput. Electron. 11, 344–348 (2012) Hamad, M.A: Investigations on electrocaloric properties of [111] oriented 0.955PbZn 1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Trans. 86, 307–314 (2013) Hamad, M.A: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014) Hamad, M.A: Appl. Phys. Lett. 102, 142908 (2013) El-Sayed, A.H, Hamad, M.A: Tailoring thermomagnetic properties in Pb (Zr0.52Ti0.48)O3–Ni (1−x)ZnxFe2O4. Phase Trans. 92, 517–524 (2019) Hamad, M.A: Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature. J Adv Dielect. 3, 1350008 (2013) Hamad, M.A: Theoretical investigations on electrocaloric properties of (111)-oriented PbMg1/3Nb2/3O3 single crystal. J. Adv. Ceram. 2, 308 (2013) Hamad, M.A: J. Supercond. Nov. Magn. 29, 1539 (2016) El-Sayed, A.H, Hemeda, O.M, Hamad, M.A, Mohamed, A.M: The Enhancement of Thermomagnetic Properties for BaFe12O19 by Trivalent Ion Substitutions J. Supercond. Nov. Magn. 33, 769–773 (2020) Hamad, M.A: J. Supercond. Nov. Magn. 27, 269–272 (2014) El-Sayed, A.H, Hamad, M.A: Nickle concentration effect on low magnetic field magnetocaloric properties for Ni2+xMn1−xGe. J. Supercond. Nov. Magn. 32, 1447–1450 (2019) Hamad, M.A: Process. Appl. Ceram. 11, 225–229 (2017) Hamad, M.A: Magnetocaloric effect in Fe3.5Co66.5Si12−xGexB18 ribbons. J. Supercond. Nov. Magn. 29, 2867–2871 (2016) Hamad, M.A: Magnetocaloric effect in Sr0.4Ba1.6−xLaxFeMoO6. J. Supercond. Nov. Magn. 27, 1777 (2014) El-Sayed, A.H, Hamad, M.A: J. Supercond. Nov. Magn. 31, 4091–4094 (2018) Hamad, M.A: J. Supercond. Nov. Magn. 27, 2569 (2014) Hamad, M.A: J. Supercond. Nov. Magn. 31, 337 (2018) Hamad, M.A: J. Adv. Ceram. 2, 213–217 (2013) Hamad, M.A: J. Supercond. Nov. Magn. 28, 3329–3333 (2015) Hamad, M.A: Monte Carlo calculations of magnetic heat capacity of La0.7Sr0.3−xMnO3−δ. J. Supercond. Nov. Magn. 28, 2525–2528 (2015) Hamad, M.A: Calculations of the low field magnetocaloric effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223 (2015) Hamad, M.A: Int. J. Thermophys. 34, 2144 (2013) El-Sayed, A.H, Hamad, M.A: Magnetocaloric effect in La1−xLixMnO3. J. Supercond. Nov. Magn. 31, 4167–4171 (2018) Hamad, M.A: Magnetocaloric effect in La1−xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015) Ewas, A.M, Hamad, M.A: Ceram. Int. 43, 7660 (2017) Hamad, M.A: Low magnetic field magnetocaloric effect in Gd5−xEuxGe4. J. Supercond. Nov. Magn. 29, 539–1543 (2016) Hamad, M.A: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3−δ. J. Supercond. Nov. Magn. 28, 173 (2015) Hamad, M.A, Hemeda, O.M, Mohamed, A.M: The simulated magnetocaloric properties for Ni0.5Cu0.25Zn0.25Fe2O4 nanoferrite", J. Supercond. Nov. Magn. (2020). 10.1007/s10948-020-05495-1

By Mahmoud A. Hamad; O. M. Hemeda and Ashraf M. Mohamed

Reported by Author; Author; Author

Titel:
Investigations on Enhancing Thermomagnetic Properties in CoxZn1−xFe2O4
Autor/in / Beteiligte Person: Mohamed, Ashraf M. ; Hemeda, O. M. ; Hamad, Mahmoud A.
Link:
Zeitschrift: Journal of Superconductivity and Novel Magnetism, Jg. 33 (2020-05-16), S. 2753-2757
Veröffentlichung: Springer Science and Business Media LLC, 2020
Medientyp: unknown
ISSN: 1557-1947 (print) ; 1557-1939 (print)
DOI: 10.1007/s10948-020-05503-4
Schlagwort:
  • 010302 applied physics
  • Materials science
  • Nanoparticle
  • Thermodynamics
  • Thermomagnetic convection
  • Atmospheric temperature range
  • Condensed Matter Physics
  • 01 natural sciences
  • Electronic, Optical and Magnetic Materials
  • 0103 physical sciences
  • Phenomenological model
  • Magnetic refrigeration
  • Operating temperature range
  • 010306 general physics
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Rights: CLOSED

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -