Zum Hauptinhalt springen

Probing the structural evolution and electronic properties of divalent metal Be2Mg n clusters from small to medium-size

Zhang, Feige ; Zhang, Xiaoyi ; et al.
In: Scientific Reports, Jg. 10 (2020), Heft 1, S. 1-10
Online unknown

Probing the structural evolution and electronic properties of divalent metal Be2Mgn clusters from small to medium-size  Introduction

Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping. In present work, a structural search of the global minimum for divalent bimetal Be2Mgn (n = 1–20) clusters are performed by utilizing CALYPSO structural searching method with subsequent DFT optimization. We investigate the evolution of geometries, electronic properties, and nature of bonding from small to medium-sized clusters. It is found that the structural transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of Mgn clusters. The Be atoms prefer the surface sites in small cluster size, then one Be atom tend to embed itself inside the magnesium motif. At the number of Mg larger than eighteen, two Be atoms have been completely encapsulated by caged magnesium frameworks. In all Be2Mgn clusters, the partial charge transfer from Mg to Be takes place. An increase in the occupations of the Be-2p and Mg-3p orbitals reveals the increasing metallic behavior of Be2Mgn clusters. The analysis of stability shows that the cluster stability can be enhanced by Be atoms doping and the Be2Mg8 cluster possesses robust stability across the cluster size range of n = 1–20. There is s-p hybridization between the Be and Mg atoms leading to stronger Be-Mg bonds in Be2Mg8 cluster. This finding is supported by the multi-center bonds and Mayer bond order analysis.

Metallic clusters, in particular, have attracted a great deal of attention in recent years due to not only their unique properties of electronic, magnetic, optical, and mechanical but also the wide applications in nanomaterials, hydrogen storage, catalyst, biomedicine, and spintronics[1]–[7]. The typical metallic clusters include alkali metal clusters of Lin[8],[9] and Nan[10],[11], noble metal clusters of Aun[12]–[14], Agn[15],[16] and Cun[17],[18], along with magnetic transition metal clusters of Fen[19],[20], Con[21],[22], Nin[23]–[25] and so on. Based on previous studies, one can draw the following conclusion that these clusters usually exhibit superior properties compared to metals in terms of activity, selectivity, stability, bonding character, and charge transfer. In addition, their superior properties sensitively depend on clusters size, element components, and dopants.

As a divalent metal, magnesium clusters have been extensively studied by both experimental and theoretical fields[26]–[31]. In previous works, one main focus of the studies is on size-induced nonmetal-to-metal transition of magnesium clusters. It is well known that the atom of divalent metal Mg has s2 closed-shell electron configuration as helium. So the bonding of the magnesium dimer is expected to be van der Waals-like[32]. As the number of atoms grows, the electronic properties of clusters transfer from van der Waals to covalent, then to metallic behavior. For example, Kaplan et al.[33] point out that the binding in alkaline-earth trimers (Be3 and Mg3) has a mixed of physical (van der Walls) and chemical (nonadditive exchange) nature, which is different from their dimers. Gong et al.[34] performed a detailed investigations in terms of the nearest neighbor bond length and s-p hybridization of the magnesium clusters. By measuring the photoelectron spectra (PES) of Mgn (n = 2–22) clusters, Thomas and co-workers[35] observed the s-p band gap of magnesium cluster anions to close at n = 18, signaling the onset of metallic behavior. Then the metallic behavior of Mgn clusters was well explained by Jellinek and Acioli[36],[37] through an analysis of charged distribution characteristics of 3p orbital. In neutral Mgn clusters, this nonmetal-to-metal transition has been reported to occur around n = 20[38]. Another main thrust of the studies is a systematic discussion on structural and energetic properties of magnesium clusters along with their magic number. Note that the Jellium model has been most successful for explaning the magic number of the simple alkali metal clusters, even for confirming the magic number of the noble metal Aun clusters. For Mgn clusters, the ab initio calculations indicate the magic number N = 4, 10, and 20 for small sized clusters[30],[39]–[41], which is in agreement with simple Jellium model. However, the finding of new experiment reveals the most intensive peaks in the mass spectra at N = 5, 10, 15, 18, and 20[31]. Thus one can find that the stability of the Mgn clusters is not only related to their electronic shell configuration but also affected by geometric structures.

Despite a number of investigations have been carried out on the pure Mgn clusters, however, little work has been done so far on the exploration of the divalent bimetal clusters. Beryllium, as one of the lightest divalent metal, has s2 valence electronic configuration. Therefore, the properties of the beryllium clusters are very similar to magnesium clusters. The small beryllium clusters also show van der Waals character bonding and the transition from nonmetal to metal occurs around Be13[42]. The theoretical studies indicate more stability of small sized beryllium clusters with magic number N = 4, 10, 17, and 20[43],[44]. So it seems a systematic study is necessary to probe the structural evolution and bonding characters of Be-doped magnesium clusters. The starting point of this work can be summarized as follows: (1) We can find the most stable structures and elucidate the structural evolution process of Be2Mgn (n = 1–20) clusters. (2) By discussing the bonding and electronic nature, we can gain a deeper understanding of the microscopic mechanisms of these bivalent bimetal clusters (3) It might provide some theoretical guidance for the development of the magnesium-based materials and their applications in catalyst, hydrogen storage, and corrosion-resistant.

Results and discussions

Geometric structure

In light of their total energies of the low energetic and stable cluster candidates, the most stable isomers Be2Mgn clusters in the size range of n = 1–20 are confirmed and presented in Fig. 1. Moreover, the typical low-lying isomers, together with their relative energies and symmetries of the Be2Mgn clusters are shown in Figs. S1 and S2. (Supplementary Information). It can be noted that our theoretical dissociation energy (0.073 eV) for the Mg2 dimer agrees well with experimental result of 0.049 eV[36]. We can get the error in the calculation of the energy around 0.024 eV. It is clearly lower than the relative energies of the low-lying isomers. To discuss the effect of dopants on the geometries and properties of magnesium clusters, the most stable structures of pure Mgn clusters are also displayed in Fig. 1. Note that the isomers of Mgn reported by earlier works[29],[30],[36]–[41] are reproduced by utilizing CALYPSO structural searching method. The most stable structures of the Mgn clusters obtained in our searches are consistent with previous results. This suggests the current method is capable of correctly identifying the lowest energy structure of magnesium and magnesium-based clusters. We list the electronic states and point group symmetries of the most stable isomers of Mgn and Be2Mgn in Table 1.

Graph: Figure 1 The most stable structures of the Mgn+2 and Be2Mgn (n = 1–20) clusters,.

Electronic states, symmetries, average binding energies Eb (eV), HOMO-LUMO energy gaps Eg (eV), and charges on the Be atoms of the most stable Mgn+2 and Be2Mgn (n = 1–20) clusters.

Clusters

Mgn+2

Be2Mgn

Sta.

Sym.

Eb

Eg

Sta.

Sym.

Eb

Eg

Charge

Be-1

Be-2

n = 1

1

D3h

0.129

2.865

1A1

C2v

0.343

2.403

−0.164

−0.164

n = 2

1A′

Td

0.302

2.899

1A1

C2v

0.634

2.582

−0.457

−0.457

n = 3

1A1

D3h

0.301

2.170

1A1

C2v

0.659

1.921

−0.826

−0.826

n = 4

1A1

C2v

0.315

1.982

1A1g

D4h

0.624

1.862

−1.094

−1.094

n = 5

1A1

D5h

0.369

2.089

1A′

Cs

0.643

1.673

−1.895

−0.630

n = 6

1A1

Cs

0.398

1.777

1A′

Cs

0.659

1.611

−1.351

−0.766

n = 7

1A′

D3h

0.485

1.527

1A

C1

0.706

1.312

−0.735

−1.051

n = 8

1A′

C3v

0.542

1.958

1A′

Cs

0.797

1.988

−1.738

−1.738

n = 9

1A1

D3h

0.532

2.047

1A′

Cs

0.765

1.589

−2.494

−1.560

n = 10

1A1

Cs

0.530

1.430

1A

C1

0.776

1.514

−1.427

−2.512

n = 11

1A′

Cs

0.550

1.552

1A

C1

0.787

1.593

−2.626

−1.449

n = 12

1A′

C1

0.556

1.212

1A

C1

0.770

1.141

−1.767

−2.416

n = 13

1A

D3h

0.603

1.219

1A1

C2v

0.800

1.123

−2.600

−1.925

n = 14

1A1

C1

0.602

1.028

1A′

Cs

0.797

0.904

−2.465

−1.679

n = 15

1A

D4d

0.660

1.101

1A′

Cs

0.824

1.187

−2.097

−1.671

n = 16

1A1

C2v

0.680

1.055

1A

C1

0.830

0.934

−1.402

−1.575

n = 17

3B2

Cs

0.700

0.988

1A

C1

0.848

0.932

−1.770

−1.894

n = 18

1A1

C3

0.726

1.523

1A

C1

0.869

1.438

−2.129

−2.085

n = 19

1A

C1

0.706

1.460

1A

C1

0.865

1.220

−2.328

−1.850

n = 20

1A

C1

0.705

1.291

1A

C1

0.855

1.066

−2.194

−2.256

Let us compare geometries of Be2Mgn to those of pure magnesium clusters. We can find several attractive results. (1) The transition point from 2D to 3D structures is n = 2 for Be2Mgn clusters, which is consistent with that of pure Mgn+2 clusters. However, the configurations transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of n = 14 for Mgn+2 clusters. (2) The Be2Mgn clusters keep the original shapes of the corresponding Mgn+2 clusters at n = 1–3, 5–8 and 16. Namely, the most stable isomers of the Be2Mg1–3,5–8,15 clusters are viewed as the substituted structures of corresponding Mg3–5,7–10,17 clusters, in which two Mg atoms are replaced by Be atoms. Due to the difference of atomic radius of Mg and Be atoms, these doped structures occur with some degree of distortion. Conversely, the remaining Be2Mgn clusters show different geometries in contrast to pure Mgn+2 clusters. It implies that the dopants might produce major influence on the frameworks of magnesium clusters in these case. (3) The Be impurity atoms prefer the convex capped sites in the size range of n = 1–4, then trend to the surface sites of the skeleton in clusters size of n = 5–9. As the number of Mg increases, stating from n–10, a different trend emerges. One of the Be atoms still localizes at the surface site, while the other tend to embed itself inside the magnesium motif. In Be2Mg16–18 clusters, the Be atom is back at the surface sites of the skeleton. At the number of Mg larger than eighteen, the Be impurity atoms have been completely encapsulated by caged magnesium framework and made more Be-Mg bonds together with surrounding Mg atoms. (4) It is worth mentioning that the most stable isomer of Mg17 cluster displays a fascinating cage structure with high D4d symmetry. Although the Be2Mg15 cluster remains this cage structure, the symmetry turns to Cs from D4d owing to effect of dopants. As shown in Fig. S2, we have predicted a high symmetric Be2Mg15 cluster (D5h symmetry) with a pentagram-shaped structure, however, it is 0.16 eV higher in total energy than the most stable isomer of Be2Mg15 cluster. In fact, for Be2Mg16–18 clusters, we also have generated some low-lying structures with two Be atoms being completely encapsulated. Further energy calculation show that these structures are less stable than the corresponding most stable isomers. Similarly, some low-lying structures with two Be atoms localizing at the surface site have been yielded for Be2Mg19–20 clusters. The present results suggest that the isomers are all less stable.

Size dependence of relative stability

Studies of the average binding energy ( Eb ) can, therefore, shed light on the size-induced inherent stability of the Mgn+2 and Be2Mgn (n = 1–20) clusters. For mentioned clusters, Eb values are calculated as

1 Eb(Mgn)=nE(Mg)E(Mgn)n,

Graph

2 Eb(Be2Mgn)=nE(Mg)+2E(Be)E(Be2Mgn)n+2,

Graph

where E denote the total energy of the corresponding clusters or atoms. Figure 2(a) shows how the Eb values of the Mgn+2 and Be2Mgn clusters evolve with increasing cluster size. The features of the curves are easily explained, as are the local maximum of the shapes corresponding to those clusters with robust stabilities. In the size range studied here, the Eb values of doped species are always much higher than those of pure clusters. It suggests that the stabilities of the pure magnesium clusters can be enhanced by means of Be atoms doping. As cluster size increases, the averaged binding energies of doped clusters approach gradually those of pure magnesium clusters because the contributing proportion of Be atoms decreases in larger size doped clusters. The graphics of Eb for both Mgn+2 and Be2Mgn clusters show the similar pattern, namely generally growing behavior with increase of cluster size and common local maximum at n = 2, 8, and 18. For large clusters, n ≥ 19, the values of Eb decrease somewhat. The appearance of the maximum indicates that Be2Mg2,8,18 and Mg4,10,20 clusters have relatively strong energetic stabilities. This finding can be interpreted by spherical Jellium model, in which the spherical magic clusters with 8, 20, 40 valence electrons corresponding to the closed electronic subshells turn out to be relatively stable.

Graph: Figure 2 Size dependence of (a) the average binding energy Eb, (b) second-order difference of energy Δ2E, and (c) HOMO-LUMO energy gaps Eg for Mgn+2 and Be2Mgn (n = 1–20) clusters.

Another manifestation of the size-induced variation in cluster stability is exhibited in Fig. 2(b), which depicts the dependence of the second-order energy difference ( Δ2E ) on cluster size. For mentioned clusters, Δ2E values are calculated as

3 Δ2E(Mgn)=E(Mgn1)+E(Mgn+1)2E(Mgn),

Graph

4 Δ2E(Be2Mgn)=E(Be2Mgn1)+E(Be2Mgn+1)2E(Be2Mgn).

Graph

As shown in the graphics, for both the Mgn+2 and Be2Mgn clusters, the Δ2E display the similar odd-even oscillating behaviors in the range of n = 10 − 16. There are several obvious peaks at n = 5, 8, 11, 13, 15, and 18. It can reflect more relative stabilities of the Be2Mgn and Mgn+2 (n = 5, 8, 11, 13, 15, and 18) clusters. Specially, the Be2Mg8 cluster has the largest Δ2E value of 1.17 eV.

Let us now regard the highest occupied and the lowest unoccupied molecular orbitals energy gaps (HOMO–LUMO gaps) of the mentioned clusters. According to the energies of the frontier molecular orbitals, gaps Eg of the most stable isomers of the Mgn+2 and Be2Mgn (n = 1–20) cluster are calculated and listed in Table 1. Meanwhile, the change of Eg versus the number of Mg atoms are shown in Fig. 2(c). One can find that the values of Eg for them exhibits a slowly but rather nonmonotonously decreasing tendency, indicating the more enhancive metallicities for the larger-sized Mgn+2 and Be2Mgn clusters. It is worth noting that tendency of gaps for pure magnesium clusters agree well with previous findings by Kuang et al.[30], Acioli et al.[36],[37], and Lyalin et al.[38]. For Be2Mgn (n = 1–20) clusters, the local peaks in the curve of Eg at n = 2, 8, 11, 15, and 18 accord with above analysis based on Eb and Δ2E . It signifies that these clusters possess dramatically enhanced chemical stability. Furthermore, we come to conclusion that the effect of doping Be atoms on the gaps of the Mgn clusters is slight in the range of n = 1 − 20. The reason may be that there is similar valence electron structure for Be and Mg atoms.

Ionization potential, electron affinity, chemical hardness, and charge transfer

It is well known that the vertical ionization potential (VIP), vertical electron affinity (VEA), and chemical hardness is very sensitive to the electronic structure of clusters. The correctness of our calculation is supported by the good agreement between experimental and theoretical VIP for the Mg atom (7.646 eV[36] vs 7.542 eV). In Table 2, we summarize the VIP, VEA, and chemical hardness (η) of the Mgn+2 and Be2Mgn (n = 1–20) clusters. The size-dependent behavior of the VIP is shown in the Fig. 3(a). As the cluster size increases, the curves of VIP for both Mgn+2 and Be2Mgn clusters exhibit decreasing tendency in general, which means that it is easier for the larger-sized clusters to lose an electron than the smaller sized ones. On the whole curve of Be2Mgn clusters, we can clearly see some pronounced local peaks at n = 2, 8, 11, 15, and 18, indicating their high chemical stability. Indeed this finding is supported by the results of the chemical hardness. As shown in Fig. 3(b), one can also find the identical local peaks of chemical hardness for Be2Mg2,8,11,15,18 clusters. It is worth pointing that local maxima of VIP and η agree well with the results of the HOMO–LUMO gaps. In addition, the values of η for both Mgn+2 and Be2Mgn clusters tend to decrease with the growing of the number of Mg atoms for the given size.

Calculated VIP (eV), VEA (eV), and chemical hardness (η, in eV) values of the most stable Mgn+2 and Be2Mgn (n = 1–20) clusters.

Mgn + 2

Be2Mgn

VIP

VAE

η

VIP

VEA

η

n = 1

6.31

0.72

5.59

6.69

1.16

5.53

n = 2

6.39

0.92

5.47

6.61

1.22

5.38

n = 3

5.56

1.00

4.56

5.63

1.16

4.47

n = 4

5.52

1.17

4.35

5.55

0.85

4.70

n = 5

5.67

1.23

4.44

5.48

1.49

3.99

n = 6

5.43

1.42

4.01

5.46

1.54

3.92

n = 7

5.54

1.84

3.70

5.52

1.93

3.59

n = 8

5.36

1.38

3.98

5.68

1.52

4.16

n = 9

5.39

1.31

4.08

5.08

1.49

3.59

n = 10

5.04

1.62

3.42

5.01

1.50

3.52

n = 11

5.12

1.70

3.42

5.19

1.54

3.65

n = 12

5.08

1.93

3.15

4.75

1.61

3.14

n = 13

4.98

1.84

3.14

4.82

1.73

3.09

n = 14

4.96

2.04

2.92

4.87

1.98

2.89

n = 15

4.90

1.91

2.99

4.97

1.84

3.13

n = 16

4.86

1.98

2.88

4.93

2.12

2.81

n = 17

4.82

2.06

2.76

4.82

2.07

2.75

n = 18

4.96

1.64

3.32

5.00

1.71

3.28

n = 19

4.95

1.76

3.19

4.80

1.81

2.99

n = 20

4.85

1.87

2.98

4.81

1.96

2.85

Graph: Figure 3 Size dependence of (a) VIP and (b) chemical hardness for Mgn+2 and Be2Mgn (n = 1–20) clusters.

With the aid of the natural population analysis (NPA), we can obtain the charges on Be atoms of the Be2Mgn (n = 1–20) clusters, as listed in Table 1. The results show that the Be atoms in all doped clusters act as the electron acceptors owing to the negative values of charges on them. Since the Be atom (1.59) is much more in electronegativity than the Mg atom (1.31), the partial charge transfer from Mg to Be takes place in Be2Mgn clusters. In Fig. 4, we depict the size dependence of total charge on Be atoms of the Be2Mgn clusters. The results show that charge transfer, in general, increases with the increasing cluster size. Two visible maximum of charge transfer occur at n = 5 and 13. To extract more charge transfer information, the natural electronic configuration (NEC) of the Be2Mgn (n = 1–20) clusters are listed in Table S1 of supplementary information. From the table, it is found that there is a large donation of electrons from the Be-2s and Mg-3s orbitals. Meanwhile, in corresponding clusters, the unfilled Be-2p orbitals accept 0.63–3.76 electrons, while Mg-3p orbitals accept 0.10–2.09 electrons, which illustrates the charge transfers occur in intramural s and p orbitals of the clusters. As the cluster size increases, the occupations of the Be-2s and Mg-3s orbitals decease while their 2p and 3p orbitals occupations increase. Previous works on Mgn clusters[36],[37] have proposed that the occupations of p orbital in Mgn clusters is an evident character of metallic bonding. Therefore, an increase in the occupations of the Be-2p and Mg-3p orbitals is a marker of the increasing metallic behavior of Be2Mgn clusters.

Graph: Figure 4 Size dependence of total charge on Be atoms for Be2Mgn (n = 1–20) clusters.

Bonding Characters

It would be interesting to shed light on the chemical bonding properties of the Be2Mgn clusters. Due to the outstanding stability, we select Be2Mg8 to be a acceptable candidate for probing the bonding feature. In Fig. 5, we analyzed its molecular orbitals and the corresponding energy levels. Because the Be2Mg8 cluster has a shell-closed electronic structure, the HOMO is doubly occupied and the LUMO is 1.99 eV higher in energy than the HOMO. Based on natural bond orbital (NBO) analysis, the components of the given molecular orbital can be obtained by Multiwfn program. For Be2Mg8 cluster, the components of LUMO contain the 13.4% of p atomic orbital (AO) of two Be atoms as well as 37.5% of s AO and 49.1% of p AO from Mg atoms. The HOMO is generated by 21.6% of Be-s AO and 25.2% of Be-p AO along with 53.2% Mg-s and Mg-p AO. For other occupied MOs, the s orbitals of the Be atoms have 6.4% contribution to the HOMO-1, while s and p AO of Mg atoms have 93.6% contribution to it. The px and py orbitals of Be atoms as well as the Mg-s, Mg-px, and Mg-py, are mainly included in HOMO-2 and HOMO-6. The HOMO-3 and HOMO-5 mostly originate from Be-p, Mg-s, and Mg-p AOs. There are 37% of Be-pz, 42.9% of Mg-s, and 20% Mg-p AO in HOMO-4. With regard to HOMO-7, the molecular orbital is mainly formed by equivalent contributions (about 23%) of Be-s and Be-p together with 33% Mg-s and 21% Mg-pz AOs. It is remarkable that the s-p hybridization between the Be and Mg atoms might lead to strong Be-Mg bonds in Be2Mg8 cluster.

Graph: Figure 5 Molecular orbitals and the corresponding energy levels of the Be2Mg8 cluster. The HOMO-LUMO gap is indicated (in green).

To further understanding the bonding characters, we analyze the multi-center bonds and corresponding bond orders. Based on the AdNDP method, a systemic search of n-center two-electron (nc-2e) bonds is performed. It is a localized bond when n = 1 and 2, whereas it is delocalized bond when n ≥ 3. The most stable Be2Mg8 cluster is to be a suitable candidate. To give a clear insight of the distribution of the multi-center bonds, we first provide a structural diagram with all atomic labels in Fig. 6(a). Then the Fig. 6(b) displays the multi-center bonds and their occupation numbers (ONs) of Be2Mg8 cluster. Below each multi-center bonds images, the structural units generated these multi-center bonds and their bond orders are exhibited. The theoretical results reveal that non localized bond, however, eleven delocalized bonds are included in Be2Mg8 cluster. In detail, one 3c-2e σ-type bond with ON = 1.83 |e| is formed by trigonal Be(1)-Be(2)-Mg(3) unit. The multi-center bond order is 0.418. Four delocalized bonds are all 3c-2e σ-type bonds (ON = 1.78–1.71 |e|) with contributions of each planar BeMg2 units. Because of different Be-Mg bond lengths in different units, it is found that the multi-center bond orders are the highest value of 0.453 for BeMg2 units including atom labels of 1–5–8 and 2–7–8, whereas they are 0.445 for 2–6–9 and 1–4–9 of BeMg2 units. There are two 5c-2e σ-type bonds with ON = 1.83 |e|, which is derived from two BeMg4 units of 1-4-5-6-10 and 2-4-6-7-10. Their multi-center bond orders are 0.285 and 0.213, respectively. Two 7c-2e with ON = 1.91–1.78 |e| (two different Be2Mg5 units) and two 8c-2e with ON = 1.84 |e| show π-type bonding character. Their multi-center bond orders are 0.272, 0.149, 0.212, and 0.179, respectively. In order to deeply examine the nature of bonding, the Mayer bond orders for each bonds of the most stable Be2Mg8 cluster are listed in Table S2. From the table, we can find that the Be atoms have formed some strong Be-Mg bonds together with their adjacent Mg atoms because the Mayer bond orders of these Mg-Be bonds are bigger than those of Be-Be bond and the most Mg-Mg bonds in Be2Mg8 cluster.

Graph: Figure 6 Analysis of (a) the structural diagram with all atomic labels and (b) AdNDP chemical bonds and multi-center bond orders for the Be2Mg8 cluster. ON denotes the occupation number.

Conclusions

In a summary, for the most stable Be2Mgn clusters, the transition point from 2D to 3D structures is n = 2 and configurations transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10. In small sized, two Be atoms prefer surface capped positions. Then one Be atom tends to embed itself inside the magnesium motif with increasing cluster size. When n ≥ 19, two Be atoms have been completely encapsulated by caged magnesium framework. It is found that the charges transfer from Mg to Be atoms in all Be2Mgn clusters. As the cluster size grows, the occupations of the Be-2p and Mg-3p orbitals increase, indicating the increasing metallic behavior of Be2Mgn clusters. The investigation of the clusters stability reveal that the stabilities of Mgn clusters can be enhanced by means of Be atoms doping and Be2Mg8 cluster is very stable in studied cluster range. There are obvious s-p hybridization of the Be and Mg atoms in Be2Mg8 cluster, which might induce stronger Be-Mg bonds. It is supported by the multi-center bonds and Mayer bond order analysis.

Computational methods

To achieve the the most stable isomers of Mgn+2 and Be2Mgn clusters, it is necessary to utilize an efficient algorithm of global optimization for searching the global minima of the different sized clusters. Here we rely on the CALYPSO code[45]–[47], which can quickly search the most stable structures of the clusters on the bases of the particle swarm optimization algorithm. The validity of this method for clusters structure predicting has been demonstrated by its successful application of various clusters[48]–[55]. In detail, trial structures of the clusters are ordered in generations in the process of searching. Each generation contains 50 structures, 60% of which are produced by PSO algorithm, whereas the rest is generated randomly. We performed 30 generations to produce 1000–1500 structurally different isomers for each clusters. The underlying geometric optimizations and energy computations for these isomers are performed at B3PW91/6–31 G level[56]–[58]. Among them, the isomers whose total energies fell into the 3 eV interval comparison with the lowest energy are reoptimized along with frequency calculation at B3PW91/6–311 G(d, p) level[58], as implemented in the Gaussian 09 program package[59]. The effect of spin multiplicity (up to septet) is taken into account in optimized procedure. It is worth pointing out the most stable isomers are found to prefer the singlet spin state, except for Mg18 cluster (triplet spin state). Based on Multiwfn program[60], the chemical bonding characters of the Be2Mgn clusters have been analyzed by utilizing the adaptive natural density partitioning (AdNDP) method[61].

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 11404008), the China Postdoctoral Science Foundation funded project (Grant No. 2017M623310XB), the Education Department of Sichuan province (Grant Nos. 17ZA0278, 18ZA0340), the Artificial Intelligence Key Laboratory of Sichuan Province (Nos. 2018RYJ07), the Innovation and Training Program for College Students of Sichuan University of Science and Engineering (Grant Nos. cx2019005), the Innovation Training Program for College Students of Shaanxi province (Grant Nos. S201910721061), and the Innovation Training Program for College Students of Baoji University of Arts and Sciences (Grant Nos. 20191XJ087).

Author contributions

Yanfei Hu and Yaru Zhao conceived the idea. Feige Zhang, Hairong Zhang, and Wang Xin performed the calculations. Feige Zhang, Peng Chen, and Xiaoyi Zhang wrote the manuscript and all authors contributed to revision.

Competing interests

The authors declare no competing interests.

Supplementary information

Graph: Supplementary Information.

Supplementary information

is available for this paper at 10.1038/s41598-020-63237-8.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References 1 Jena P, Sun Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem. Rev. 2018; 118: 5755-5870. 10.1021/acs.chemrev.7b00524 2 Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008; 108: 845-910. 10.1021/cr040090g 3 Vines F, Gomes JRB, Illas F. Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis. Chem. Soc. Rev. 2014; 43: 4922-4939. 10.1039/C3CS60421G 4 Weng B, Lu KQ, Tang ZC, Chen HM, Xu YJ. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018; 9. 10.1038/s41467-018-04020-22018NatCo.9.1543W5906565 5 Xing XD. Insight into the geometries, electronic and magnetic properties of neutral and charged palladium clusters. Sci. Rep. 2016; 6. 10.1038/srep196562016NatSR.619656X4726383 6 Gao W. Design principles of inert substractes for exploiting gold clusters' intrinsic catalytic reactivity. Sci. Rep. 2015; 5. 10.1038/srep150952015NatSR.515095G4602230 7 Pereiro M. Biomedical applications of small silver clusters. J. Appl. Phys. 2008; 103: 07A315. 10.1063/1.2836803 8 Fournier R, Cheng JBY, Wong Y. Theoretical study of the structure of lithium clusters. J. Chem. Phys. 2003; 119: 9444. 10.1063/1.16152372003JChPh.119.9444F 9 Jovan Jose KV, Gadre SR. Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetic of (Li)n clusters. J. Chem. Phys. 2008; 129: 164314. 10.1063/1.29931692008JChPh.129p4314K Sun WG. Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na20 cluster. Inorg. Chem. 2017; 56: 1241-1248. 10.1021/acs.inorgchem.6b02340 Kostko O, Huber B, Moseler M, von Issendorff B. Structure determination of medium-sized sodium clusters. Phys. Rev. Lett. 2007; 98: 043401. 10.1103/PhysRevLett.98.0434012007PhRvL.98d3401K Huang W, Wang LS. Probing the 2D to 3D structural transition in gold cluster anions using argon tagging. Phys. Rev. Lett. 2007; 102: 153401. 10.1103/PhysRevLett.102.1534012009PhRvL.102o3401H Pei Y, Zeng XC. Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale. 2012; 4: 4054-4072. 10.1039/c2nr30685a2012Nanos.4.4054P Shao N. Structural evolution of medium-sized gold clusters Aun‾ (n=36, 37, 38): appearance of bulk-like face centered cubic fragment. J. Phys. Chem. C. 2014; 118: 6887-6892. 10.1021/jp500582t Alamanova D, Grigoryan VG, Springborg M. Theoretical study of the structure and energetics of silver clusters. J. Phys. Chem. C. 2007; 111: 12577-12587. 10.1021/jp0717342 Baishya K. Optical absorption spectra of intermediate-size silver clusters from first principle. Phys. Rev. B. 2008; 78: 075439. 10.1103/PhysRevB.78.0754392008PhRvB.78g5439B Die D, Zheng BX, Zhao LQ, Zhu QW, Zhao ZQ. Insight into the structural, electronic and magnetic properties of V-doped copper clusters: comparison with pure copper clusters. Sci. Rep. 2016; 6. 10.1038/srep319782016NatSR.631978D4989221 Lecoultre S. Optical absorption of small copper clusters in neon: Cun (n=1–9). J. Chem. Phys. 2011; 134: 074303. 10.1063/1.35520772011JChPh.134g4303L Niemeyer M. Spin coupling and orbital angular momentum quenching in free iron clusters. Phys. Rev. Lett. 2012; 108: 057201. 10.1103/PhysRevLett.108.0572012012PhRvL.108e7201N Alonso JA. Electronic and atomic structure, and magnetism of transition-metal clusters. Chem. Rev. 2000; 100: 637-678. 10.1021/cr980391o11749247 Datta. S. Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys. Rev. B. 2007; 76: 014429. 10.1103/PhysRevB.76.0144292007PhRvB.76a4429D Meyer J. The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters. J. Chem. Phys. 2015; 143: 104302. 10.1063/1.49294822015JChPh.143j4302M26374030 Song W, Lu WC, Wang CZ, Ho KM. Magnetic and electronic properties of the nickel clusters Nin (n≤30). Comput. Theor. Chem. 2011; 978: 41-46. 10.1016/j.comptc.2011.09.028 Xie Z, Ma QM, Liu Y, Li YC. First-principle study of stability and Jahn-Teller distortion of nickel clusters. Phys. Lett. A. 2005; 342: 459-467. 10.1016/j.physleta.2005.05.0672005PhLA.342.459X Grigoyan VG, Springborg M. Structural and energetic properties of nickel clusters: 2≤n≤150. Phys. Rev. B. 2004; 70: 205415. 10.1103/PhysRevB.70.2054152004PhRvB.70t5415G Balfour WJ, Douglas AE. Absorption spectrum of the Mg2 molecule. Can. J. Phys. 1970; 48: 901-914. 10.1139/p70-1161970CaJPh.48.901B Miller JC, Andrew L. Laser photoluminescence spectra of diatomic magnesium (24Mg2 and 26Mg2) in solid argon at 12 K. J. Am. Soc. Chem. 1978; 100: 2966-2970. 10.1021/ja00478a006 Kooi BJ, Palasantzas G, De Hosson J, Th M. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study. Appl. Phys. Lett. 2006; 89: 161914. 10.1063/1.23588602006ApPhL.89p1914K Duanmu K. Geometries, Binding energies, ionization potentials, and electron affinities of metal clusters: Mgn0,±1, n=1–7. J. Phys. Chem. C. 2016; 120: 13275-13286. 10.1021/acs.jpcc.6b03080 Xia XX. Deciphering the structural evolution and electron and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. J. Phys. Chem. A. 2016; 120: 7947-7954. 10.1021/acs.jpca.6b07322 Diederich T, Döppner T, Braune J, Tiggeabaunker J, Meiwes-Broer K-H. Electron depocalization in magnesium clusters grown in supercold helium droplets. Phys. Rev. Lett. 2001; 86: 4807. 10.1103/PhysRevLett.86.48072001PhRvL.86.4807D Li P, Xie W, Tang T. The van der Waals potential of the magnesium dimer. J. Chem. Phys. 2010; 133: 084308. 10.1063/1.34793922010JChPh.133h4308L Kaplan IG, Díaz CC. Comparative study of the electron affinities of beryllium and magnesium dimers and trimers. Int. J. Quantum. Chem. 2005; 104: 468-474. 10.1002/qua.206332005IJQC.104.468K Gong XG, Zheng QQ, He YZ. Electronic structures of magnesium clusters. Phys. Lett. A. 1993; 181: 459-464. 10.1016/0375-9601(93)91150-41993PhLA.181.459G Thomas OC, Zheng WJ, Xu SJ, Bowen KH Jr. Onset of metallic in magnesium clusters. Phys. Rev. Lett. 2002; 89: 213403. 10.1103/PhysRevLett.89.2134032002PhRvL.89u3403T Jellinek J, Acioli PH. Magnesium clusters: structural and electronic properties and the size-induced nonmetal-to-metal transition. J. Phys. Chem. A. 2002; 106: 10919-10925. 10.1021/jp020887g Acioli PH, Jellinek J. Electron binding energies of anionic magnesium clusters and the nonmetal-to-metal transition. Phys. Rev. Lett. 2002; 89: 213402. 10.1103/PhysRevLett.89.2134022002PhRvL.89u3402A Lyalin A, Solovyov I, Solovyov AV, Greiner W. Evolution the electronic and ionic structure of Mg clusters with increase in cluster size. Phys. Rev. A. 2003; 67: 063203. 10.1103/PhysRevA.67.0632032003PhRvA.67f3203L Akola P, Rytkonen K, Manninen M. Metallic evolution of small magnesium clusters. Eur. Phys. J. D. 2001; 16: 21-24. 10.1007/s1005301700512001EPJD.16.21A Janecek S, Krotscheck E, Liebrecht M, Wahl R. Structure of Mgn and Mgn+ clusters up to n=30. Eur. Phys. J. D. 2011; 63: 377-390. 10.1140/epjd/e2011-10694-22011EPJD.63.377J Zhang JM, Duan YN, Xu KW, Ji V, Man ZY. Ab initio calculation of neutral and singly charged Mgn (n≤11) clusters. Phys. B. 2008; 403: 3119-3124. 10.1016/j.physb.2008.03.0212008PhyB.403.3119Z Kawai R, Weare JH. From van der Waals to metallic bonding: the growth of Be clusters. Phys. Rev. Lett. 1990; 65: 80. 10.1103/PhysRevLett.65.801990PhRvL.65.80K Wang JL, Wang GH, Zhao JJ. Density functional study of beryllium clusters, with gradient correction. J. Phys: Condens. Matter. 2001; 13: L7532001JPCM.13L.753W Cerowski V, Rao BK, Khanna SN, Jena P. Evolution of the electronic structure of Be clusters. J. Chem. Phys. 2005; 123: 074329. 10.1063/1.20016552005JChPh.123g4329C Wang YC, Lv J, Zhu L, Ma YM. Crystal structure prediction via particle swarm optimization. Phys. Rev. B: Condens. Matter Mater. Phys. 2010; 82: 094116. 10.1103/PhysRevB.82.0941162010PhRvB.82i4116W Wang YC, Lv J, Zhu L, Ma YM. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012; 183: 2063-2070. 10.1016/j.cpc.2012.05.0082012CoPhC.183.2063W Lv J, Wang YC, Zhu L, Ma YM. Particle swarm structure prediction on clusters. J. Chem. Phys. 2012; 137: 084104. 10.1063/1.47467572012JChPh.137h4104L Li CG. Structures, stabilities and electronic properties of boron-doped silicon clusters B3Sin (n=1–17) and their anions. Mol. Phys. 2019; 117: 382-394. 10.1080/00268976.2018.15168972019MolPh.117.382L Li CG. Insights into the structures and electronic properties of Cun+1μ and CunSμ (n=1–12; μ=0, ±1) clusters. Sci. Rep. 2017; 7. 10.1038/s41598-017-01444-62017NatSR.7.1345L5430952 Li CG. First-principle study of structural, electronic and magnetic properties of (FeC)n (n=1–8) and (FeC)8TM (TM=V, Cr, Mn and Co) clusters. Sci. Rep-uk. 2017; 7: 17516. 10.1038/s41598-017-17834-92017NatSR.717516L Xia XX. Study of structural and electronic properties of neutral and charged niobium-doped silicon clusters: niobium encapsulated in silicon cages. J. Phys. Chem. C. 2016; 120: 677-684. 10.1021/acs.jpcc.5b09453 Zhu B. Insights into the structural, electronic and magnetic properties of Ni-doped gold clusters: Comparison with pure gold clusters. J. Alloy Compd. 2017; 696: 402-412. 10.1016/j.jallcom.2016.11.324 Zhao YR. Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters. J. Phys. Chem. C. 2019; 123: 28561-28568. 10.1021/acs.jpcc.9b07184 Jin YY. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations. Sci. Rep. 2016; 6. 10.1038/srep301162016NatSR.630116J4954966 Shao P. Prediction of hypervalent molecules: investigation on MnC (M=Li, Na, K, Rb and Cs; n=1-8) clusters. Phys. Chem. Chem. Phys. 2017; 19: 25289-25297. 10.1039/C7CP03776G Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993; 98: 5648. 10.1063/1.4649131993JChPh.98.5648B Perdew JP, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1992; 46: 12947. 10.1103/PhysRevB.46.129471992PhRvB.4612947P Feller D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comp. Chem. 1996; 17: 1571-1586. 10.1002/(SICI)1096-987X(199610)17:13<1571:AID-JCC9>3.0.CO;2-P Frisch, M. J. et al. Gaussian 09 (Revision C.01), Gaussian, Inc, Wallingford, CT, (2009). Lu T, Chen FW. Multiwfn: A multifunctional wavefunction analyzer. Comput. Phys. Commun. 2012; 33: 580-592 Zubarev DY, Boldyrev AI. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008; 10: 5207-5217. 10.1039/b804083d18728862

By Feige Zhang; Hairong Zhang; Wang Xin; Peng Chen; Yanfei Hu; Xiaoyi Zhang and Yaru Zhao

Reported by Author; Author; Author; Author; Author; Author; Author

Titel:
Probing the structural evolution and electronic properties of divalent metal Be2Mg n clusters from small to medium-size
Autor/in / Beteiligte Person: Zhang, Feige ; Zhang, Xiaoyi ; Zhang, Hai-Rong ; Xin, Wang ; Chen, Peng ; Zhao, Yaru ; Hu, Yan-Fei
Link:
Zeitschrift: Scientific Reports, Jg. 10 (2020), Heft 1, S. 1-10
Veröffentlichung: Nature Publishing Group, 2020
Medientyp: unknown
ISSN: 2045-2322 (print)
Schlagwort:
  • Multidisciplinary
  • Materials science
  • Doping
  • lcsh:R
  • lcsh:Medicine
  • 02 engineering and technology
  • 010402 general chemistry
  • 021001 nanoscience & nanotechnology
  • 01 natural sciences
  • Bond order
  • 0104 chemical sciences
  • Metal
  • Partial charge
  • Atomic orbital
  • Chemical physics
  • visual_art
  • Atom
  • visual_art.visual_art_medium
  • Cluster (physics)
  • lcsh:Q
  • 0210 nano-technology
  • lcsh:Science
  • Bimetallic strip
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Sprachen: English
  • Language: English
  • Rights: OPEN

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -