Zum Hauptinhalt springen

Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review

Ding, Gongtao ; Liang, Tisong ; et al.
In: Biomolecules, Jg. 9 (2019-08-01), Heft 9
Online unknown

Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review 

Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.

Keywords: Lycium barbarum polysaccharides; structural characterization; antitumor activity; antioxidant activity; immune regulation

1. Introduction

Lycium barbarum L., known as the wolfberry or goji berry, the fruits derived from Lycium barbarum L, are a local food that is widely distributed in the arid and semi-arid regions of China, Korea, Japan, Europe, North America, and the Mediterranean. Currently, China is the largest world producer with its 82,000 ha of cultivated land and 95,000 t of berries produced per year. The earliest use of the goji berry as a medicinal plant was at around 2300 years ago [[1]]. L.barbarum L. fruit is used as a traditional Chinese herbal medicine and functional food in daily life [[2]].

Three Lycium species (L. barbarum, L. chinense, and L. ruthenicum) have been discovered. Among the three species, the yield of Lycium barbarum is the largest in China. They are used as medicine in China and as medicinal and functional food because of their health benefits, including anti-aging, antioxidant, antidiabetic, anticancer, cytoprotective, neuroprotective, and immunomodulatory effects [[4]]. The physical appearance of Lycium barbarum is shown in Figure 1. The fruit is red and about 1–2 cm long. Numerous reports have been conducted to explore the function and characterization of its extracts because of the health benefits of Lycium barbarum. More than 200 different components, including carotenoids, phenylpropanoids, flavonoids, polyphenols, and polysaccharides, have been identified, characterized, and analyzed. Polysaccharides, vitamins, betaine, and mixed extracts of the goji berry are responsible for health benefits, such as eliciting anti-aging effects, improving eyesight, and exhibiting antifatigue effects [[10]].

Among Lycium barbarum extracts, L. barbarum polysaccharides (LBPs) isolated from L. barbarum fruit have been responsible for the biological activities of Lycium barbarum. LBPs are a group of water-soluble glycoconjugates with a molecular weight of 10–2300 kDa and comprise 5–8% of the dried fruits [[11]]. The beneficial health effects of LBPs, including antioxidant and antiaging effects, increased metabolism, antiglaucoma effects, immune regulation, anticancer effects, neuroprotective properties, and antidiabetic effects, have been reported [[12]]. According to the Chinese understanding of Lycium extracts and products, the content of LBPs is important for the efficacy of L. barbarum [[17]]. Therefore, as bioactive constituents of L. barbarum, LBPs have many biological functions to improve people's health. The biological functions of LBPs are complex and multifaceted because of the relationship between the physiological structure and functions of LBPs. The relationship and mechanism between LBPs and human health should be fully understood. In order to give a comprehensive understanding of LBPS, the extraction methods, structure, composition, and biological functions of LBPs were summarized and discussed in this review. We collected and summarized the relative contents from previous reports to provide a theory basis for comprehensively understanding and utilizing LBPs in medical and food fields.

2. Extraction Methods of LBPs

Previous reports have shown that the chemical ingredients of L. barbarum fruit include polysaccharides, proteins, and phenylpropanoids. Among these ingredients, LBPs account for 5–8% of the dried fruit and elicit biological effects [[2]]. LBPs are subjected to extraction, purification, and analysis. The flowchart of the extraction, purification, and analysis of LBPs is shown in Figure 2.

LBPs are extracted by destroying and degrading the cell wall under mild conditions without changing the properties of the polysaccharides in accordance with basic extraction principles [[20]]. Many LBP extraction methods, such as the water extraction method, enzyme-assisted extraction method, microwave-assisted extraction method, ultrasonic-assisted extraction method, and supercritical fluid extraction method, have been developed on the basis of this principle [[21]]. Traditional LBP extraction methods have some advantages and disadvantages. Novel LBP extraction technologies, such as ultrasound-assisted extraction method (UAE) [[23]], enzyme-assisted extraction method (EAM) [[25]], microwave-assisted extraction method (MAM) [[27]], and supercritical fluid extraction method (SFM) [[28]], have been developed to address the disadvantages of traditional extraction methods. The high extraction yield and high biological activity of LBPs are considered in choosing an extraction method [[29]].

These extraction methods have unique strengths and weaknesses [[21]]. Hot water extraction (HWE) is the traditional method for polysaccharide extraction. The yield of HWE is largely affected by extraction time, temperature, and the ratio of water to raw material. Also, the long duration and high temperature may lead to the degradation of the polysaccharides and decrease their biological activity. EAM possesses the advantages of environmental friendliness, high efficiency, ease of operation, and low investment cost and energy. However, the enzyme is characterized by specificity and selectivity, while several factors, such as enzyme concentration, temperature, time, and pH also affect the biological function of polysaccharides. MAM is a physical technique that is used for the extraction of polysaccharides. MAE has noticeable advantages, such as shorter extraction time, higher extraction yield, lower cost, and less solvent consumption. UAM has the advantage of improving penetration and capillary effects, leading to an increase of polysaccharides' extractability. However, ultrasonic treatment could affect the structure and molecular weight (MW) of polysaccharides, which would cause a change in the biological activity. The extraction conditions and yield of LBP extract by different extraction methods are shown in Table 1.

As the traditional extraction method is widely used in the extraction of LBPs, the yield of the water extraction method (WEM) is 5.87% under the experimental conditions [[30]]. The yields of LBPs via UAM, EAM, and MAM are 2.286–5.701%, 6.81% ± 0.10%, and 8.25% ± 0.07%, respectively [[31]]. The yield of LBPs of novel extraction methods is higher than that of the water extraction method. Moreover, the combination of different extraction methods can obtain enhanced yields of LBPs; when the ultrasound-enhanced subcritical water extraction method (USWE) is used to extract the LBPs, high recovery yields of LBPs are produced [[24]].

3. Structure and Composition of LBPs

The separation and structural characterization methods of purified LBPs have been developed. As active ingredients, LBPs possess various biological functions. More than 33 polysaccharides have been analyzed and identified from L. barbarum L.

The main applied and performance techniques for the structural characterization of LBP fraction include the following techniques: (1) high-performance gel permeation chromatography (HPGPC), which is used to determine the homogeneity and molecular weight of macromolecules; (2) partial acid or enzymatic hydrolysis, oxidation with periodic acid, Smith degradation, high-performance liquid chromatography (HPLC), gas chromatography (GC), polysaccharide analysis by gel electrophoresis (PACE), and high-performance thin-layer chromatography (HPTLC). These techniques are used to determine monosaccharide composition and map the glycidic component of glycoconjugates; (3) infrared (IR) spectral analysis permits the identification of pyranosyl or furanosyl ring form and α or β anomeric configuration in monosaccharide residues; (4) 1H and 13C nuclear magnetic resonance (NMR) spectroscopy used to assign the ratios of monosaccharides present and ratios of their anomeric bonds; (5) gas chromatography–mass spectrometry (GC–MS), employed to determine the linkage positions.

Studies have widely explored the structure and composition of LBPs and demonstrated that LBPs are polysaccharides, including some ingredients of acidic heteropolysaccharides, polypeptides, or proteins [[37]]. The molecular weight of LBPs at the range of 10–2300 kDa. The methods used for the isolation and purification of LBPs from L. barbarum include DEAE ion-exchange cellulose, gel-permeation chromatography, and high-performance liquid chromatography (HPLC) [[31], [38]]. About 20 types of polysaccharides, including Rha, Fuc, Ara, Gal, and GalA, have been investigated. Studies have shown that monosaccharide and amino acid residues constitute glycoconjugates, and, relative to glycosidic linkage analysis of glycan backbone, branching sites and side chains were considered as the structure of LBPs. The possible structure of repeat units, molecular weights, and analysis technique of previously investigated polysaccharides in L. barbarum are shown in Table 2.

4. Biological Function of LBPs

4.1. Antioxidant Function

Natural bioactive compounds present good biological activities, such as antioxidant, anticancer, and other functions, because of the broad diversity of structures and functionalities [[54]]. As bioactive compounds, LBPs have good antioxidant properties [[57]]. Antioxidant activity is mainly contributed by carotenoids, flavonoids, ascorbic acid and its derivatives, and polyphenols [[60]].

The biological function of LBPs have many potential functions relative to the antioxidant activity in many tissues [[62]]. Studies have investigated the antioxidant activity of LBPs that extract with hot water and the protective effect of LBPs against tissue oxidative injury, with results showing that LBPs exhibit a good antioxidant activity and a protective effect against skin oxidative injury [[65]]. The antioxidant effects of LBPs extracted by hot water have been explored via an in vivo model, showing that LBP treatments can significant increase the serum levels of SOD and GSH-Px and significantly decrease MDA contents [[66]]. The antioxidant function of LBPs shows that LBPs can significantly enhance macrophage NO, phagocytic capacity, and acid phosphatase, and exhibit good antioxidant activities in vitro [[70]]. LBPs can significantly increase cell viability that decreases by LPS and regulate oxidative stress by inhibiting caspase-3 activation and ROS levels in vitro [[71]]. Studies have investigated the effects of LBPs on stressed RPE cells and have shown that LBPs can decrease ROS levels via free radical scavenging and downstream gene function to prevent ROS-induced apoptosis [[72]]. Antioxidant enzyme activities, GSH levels, and MDA levels in rats fed with a high-fat diet and LBPs decreased when compared with those in the control group (p < 0.01) [[73]]. The antioxidant activity and mechanisms of LBPs are shown in Table 3.

4.2. Immune Regulation

Immune regulation is an important function of LBPs in people's health. Previous studies have shown that LBPs exhibit an immune-modulating function in target dendritic cells, macrophages, T- and B-lymphocytes, and natural killer (NK) cells [[79]]. The immune regulation of LBPs is an important function that has been studied widely in previous studies.

Dendritic cells are used to study the effects of LBPs, and results have shown that LBPs can induce the phenotypic and functional maturation of DCs via Notch signaling and promote the cytotoxicity of DC-mediated CTLs [[80]]. In nutritive additives, LBPs can be used as an additive in the growth of broilers, indicating that LBPs may possess the clinical efficacy for growth promotion and immunomodulation and can be used as an alternative to nutritive additive in broilers [[81]]. The nanoliposome technique is used to load LBPs and study their function, showing that LBPs can significantly promote splenocyte proliferation, increase the amount of CD4(+) to CD8(+) T cells, and promote the cytokine secretion of macrophages [[82]]. The extract of L. barbarum exhibits a significant immunomodulatory activity through the promotion effects of nitric oxide and cytokines in RAW264.7 cells [[83]]. The efficacies of sulfated LBPs on immune enhancements in cultured chicken are high [[84]]. In summary, the immune regulation and mechanism of LBPs are shown in Table 4.

4.3. Antitumor Activity of LBPs

The antitumor activity of natural products isolated from plants have been reported [[90]]. Previous studies have shown that more than 100 polysaccharides exhibit good anticancer activity via in vitro studies and in vivo animal models [[93]].

As natural products, LBPs exhibit potential antitumor activity [[94]]. Studies have shown that the anticancer activity of LBPs occurs because of their effects on cancer tissue or cancer cells. The exposure to hot water extracts of Lycium barbarum for 24 h made cell viability reduce to 15.31% of hepatocellular carcinoma cells, as reported in a previous study [[95]]. Colorectal cancer is one of the most common cancers worldwide, with a study showing that the treatment of LBP (5000 mg/L) can decrease cell viability of SW480 and Caco-2 cells to 10% after 5 days of treatment, and that the treatment with LBP resulted in a dose-dependent increase in the distribution of cells in the G0/G1 phase [[96]]. For gastric cancer cells, LBPs can inhibit the proliferation of these cells and arrest the cell cycle at the G0/G1 phase, suggesting that LBPs are candidate anticancer agents [[97]]. The inhibitory effect of LBPs on the growth of glioma in rats and the underlying mechanism have been explored, and results have shown that the mechanism may be related to the regulation of the blood–brain barrier and to the promotion of CD[8]+ T cell invasion in the brain [[98]]. Studies on the effects of LBPs on the viability, cell cycle, and apoptosis of human hepatoma cells have demonstrated that LBPs can inhibit cell growth, arrest the cell cycle in the S phase, and induce apoptosis, suggesting the antiproliferative activity of LBPs by inducing cell cycle arrest and increasing intracellular calcium in the apoptotic system [[99]]. The anticancer activity of LBPs is mainly due to the inhibited growth of cells, arrested cell cycle, and induced cell apoptosis. The antitumor activities of LBPs on different cancer cells are shown in Table 5. LBPs exhibit a good antitumor activity on various cancer cells.

These results show that LBPs can decrease the viability of cancer cells and have inhibitory effects on cancer cells, indicating that LBPs can be used as a candidate anticancer agent in cancer treatment.

4.4. Neuroprotective Effects of LBPs

Natural products isolated from plants exhibit certain biological functions and have been extensively investigated because of their efficiency and biosafety. As such, they have been widely used to treat diseases. Plant extracts have been utilized to treat various functions of central nervous systems [[102]]. Polysaccharides are effective compounds from neurobiologically active plants, and many studies have demonstrated their beneficial effects, including neurological disorders [[102]].

The neuroprotective effects of LBPs on ischemic injury is mainly through the signaling pathways of NR2A activation and NR2B inhibition, and LBPs can be used to treat ischemic stroke [[104]]. A mouse experiment model of the neuroprotective effects of LBPs have shown that LBPs may exert neuroprotective effects and help prevent neurodegenerative diseases [[105]]. In modern society, visual impairments and blindness cause heavy damage on people's health. LBP treatment can significantly weaken these injuries with enhanced endogenous autophagy in the body [[106]]. The neuroprotective effects and molecular mechanisms of LBPs are shown in Table 6.

4.5. Other Biological Activities

The antioxidant activity, antitumor properties, immune regulation, and neuroprotective effects of LBPs were explored in in vitro and in vivo models. Besides this, LBPs also have other biological activities, such as protecting the liver from hepatotoxicity [[122]], alleviating dry-eye disease [[123]], eliciting antidiabetic effects [[124]], increasing cell abilities, decreasing cell morphologic impairment, protecting against ultraviolet-induced damage [[122]], and alleviating CCl4-induced liver fibrosis [[125]]. As bioactive constituents, LBPs exhibit various biological functions and show potential benefits to people's health. The other biological activities and mechanism of LBPs are summarized in Table 7.

5. Conclusions

In China, goji berries are a traditional medicinal herb that have been used for thousand years to cure disease and improve the function of the liver, kidney, and lungs. More recently, western countries have also started cultivating Lycium barbarum L. plants, whose fruits are consumed fresh or dried. Previous reports have showed that L. barbarum fruit exhibits a wide array of pharmacological activities. This beneficial L. barbarum component consists of a complex mixture of glycoconjugates—these being LBPs—with a molecular weight range of 10–2300 kDa, water solubility, and containing a carbohydrate portion (≥90%), represented by highly-branched polysaccharides. The LBP glycan backbones have been found to be mainly represented by α-(1→4)-galA, α-(1→6)-glc, β-(1→3)-galp (typical of arabinogalactan proteins), and β-(1→6)-galp. Other structures, less representative, are α-(1→5)-ara and β-(1→4)-galp, with different branching and terminal sites. The extraction methods of LBPs, including water extraction, enzyme-assisted extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, produce different effects on the quality of LBPs. The biological functions of LBPs indicate that LBPs exhibits antioxidant, immunomodulation, antitumor, neuroprotection, and hepatoprotection.

LBPs are the main active substances in L. barbarum fruits and are involved in various biological functions. LBPs have great potential health benefits for further use in nutraceutical and pharmaceutical fields. The biological function of LBPs has been explored using in vitro and in vivo models but not in the human body. However, the relationship between a high-order LBP structure and bioactivities has yet to be further explored. Novel omics technologies, such as proteomics, metabolomics, and genomics, are effective in investigating the biological function of LBPs. Future works should focus on the high-order structures of LBPs, their biological function in the human body, and the relationship between their structure and bioactivity to enhance our understanding of the functional effects of LBPs. Current extraction methods give low yields and other weaknesses in the extraction of LBPs. Novel environmentally friendly and high-yielding extraction methods of LBPs should be further developed. The extraction methods and structural and biological functions of LBPs were summarized in this review to provide a useful bibliography for further investigations and applications of LBPs in medicine and food.

Figures and Tables

Graph: Figure 1 The fresh (left) and dried form (right) of Lycium barbarum fruit.

Graph: Figure 2 The flowchart of the extraction, purification, and analysis of Lycium barbarum polysaccharides (LBPs). WEM: water extraction method, EAM: enzyme-assisted extraction method, MAM: microwave-assisted extraction method, UAM: ultrasonic-assisted extraction method.

Table 1 Summary of the extraction methods on the extraction of LBPs.

Extraction MethodsExtraction ConditionsYield (%)Ref
Water extraction methodThe ratio liquid to solid 70:1, pH 10, at 65 °C, extracted in soakage for 3.5 h.7.46–7.63%[30, 34-35]
Ultrasound-assisted extraction methodExtraction time of 30 min, temperature of 60 °C, solid/liquid ratio of 20 g/600 mL, power density of 300 W/L, ultrasound frequency of 28 kHz.2.286–5.701%[23, 36]
Enzyme-assisted extraction methodExtraction time of 91 min, extraction temperature of 59.7 °C, pH 5.0.6.81 ± 0.10 %[26]
Microwave-assisted extraction methodRatio of water to raw material of 31.5 mL/g, extraction time of 25.8 min, microwave power of 544.0 W.8.25 ± 0.07% [27]
Combination of extraction methodsTemperature of 100 °C, extraction time of 53 min, liquid-to-solid ratio of 26 mL/g, ultrasonic electric power of 160 W.5.728%[24]

Table 2 The possible structure of repeat units, molecular weights, and analysis technique of polysaccharides in L. barbarum [39]. Definitions: SEC = size exclusive chromatography, GC–MS = gas chromatography–mass spectrometry, NMR = nuclear magnetic resonance, IR = infrared, GC = gas chromatography, ESI-MS = electrospray ionization mass spectrometry, HPGPC = high-performance gel permeation chromatography.

NoName Mw (kDa)Molar RatioAnalysis TechniquePossible Structure of Repeat UnitRef
1LbGp2 68,200Ara:Gal = 4:5SEC, GC-MSBackbone composed of (1→6)- β-Gal. Branches composed of (1→3)- β-Ara and (1→3)- β-Gal terminated with (1 → 3)/(1→5)- α-Ara.[40]
2LbGp392,500Ara:Gal = 1:1NMRBackbone composed of (1→4)- β-Gal. Branches composed of (1→3)- β-Ara and (1→3)- α-Gal terminated with (1 → 3)/ (1→5)- α-Ara.[41]
3LbGp4214,800Ara:Gal:Rha:Glc = 1.5:2.5:0.43:0.23NMRBackbone composed of (1→4)- β-Gal. Branches composed of (1→3)- β-Gal terminated with (1→3)- α-Ara and (1→3)- β-Rha.[42]
4LBPA366,000Ara:Gal = 1.2:1Ion exchange chromatographyHeteropolysaccharide with (1→4), (1→6).[43]
5LBPB118,000Ara:Glc = 1:3.1Heteropolysaccharide with (1→4), (1→6) β-glycosidic bond.
6LBP-a410,200Fuc: gal = 0.41:1Ultrafiltration membrane method[43]
7LBPC212,000Xyl:Rha:Man = 8.8:2.3:1Heteropolysaccharide with (1→4), (1→6) β-glycosidic bond.[44]
8LBPC410,000GlcIR, GCHeteropolysaccharide with (1→4), (1→6) α-glycosidic bond.[45]
9LBP1a-1115,000Glcα-(1→6)- D –glucan.[46]
10LBP1a-294,000Glcα-(1→6)- D –glucan.
11LBP3a-1103,000GalA composed of a small amount of Gal and Ara Gel permeation chromatography, NMR Polygalacturonan with (1→4)- α-glycosidic bond.
12LBP3a-282,000GalA composed of a small amount of Gal and AraPolygalacturonan with (1→4)- α-glycosidic bond.
13LBLP5-A113,300(1 -> 3)-linked Gal, (1 -> 4)-linked Gal, (1 -> 3)-linked Araf, (1 -> 5)-linked Araf, and (1 -> 2, 4)-linked Rhaf.[47]
14WSPRha:Fuc:Ara:Xyl:Man:Gal:Glc = 1.6:0.2:51.4:4.8:1.2:25.9:7.3NMR, ESI-MSBackbone composed of (1 → 2)-linked-Rha and (1→4)-linked-Gal. Branches composed of (1→5)-linked-Ara terminated with Ara residues, and (1→4)-linked-Xyl terminated with Man residues.
15AGPRha:Ara:Xyl:Gal:Glc:GalA:GlcA = 3.3:42.9:0.3:44.3:2.4:7.0NMRBackbone composed of linear homogalacturonan fragments and rhamnogalacturonan fragments. Side chains mainly composed of β−1,6- and β−1,4-galactopyranan and α−1,5-arabinofuranan.[48]
16LBP-IV41,800Rha:Ara:Xyl:Glc:Gal = 1.61:3.82:3.44: 7.54:1.00DEAE-Sephadex, HPGPC, IR, UVBackbone composed of both α- and β- anomeric configurations of Ara and Glc. Rha was located at terminal of polysaccharide chain.[49]
17LbGp149,100Ara:Gal = 5.6:1HPGPCBackbone composed of (1→6)-Gal. Side chains mainly composed of (1→3)-Gal/(1→4)-Gal and (1→3)-Ara/(1→4)-Ara. Ara was located at terminal of branch.[50]
18p -LBP64,000Fuc:Rha:Ara:Gal:Glc:Xyl:GalA:GlcA = 1.00:6.44:54.84:22.98:4.05: 2.95:136.98:3.35HPAEC-PAD, HPSEC, FT-IR, GC–MS, and NMRBackbone composed of (1→4)- α-GalA. Side chains mainly composed of α−1,2- and α−1,4-Rha and α−1,5-Ara.[51]
19LBP1B-S-280,000 Rha:Ara:Gal:Glu = 3.13: 53.55: 39.37: 3.95DEAE SepharoseBackbone consisted of 1, 3-linked beta-D-Galp, 1, 6-linked beta-D-Galp and branches contained 1, 4-linked beta-D-GlcpA, T-linked beta-D-Galp, 1, 6-linked beta-D-Galp, T-linked alpha-L-Araf, T-linked beta-L-Aral 1, 5-linked alpha-L-Araf and T-linked beta-L-Rhap.[52]
20LRGP156,200Rha:Ara:Xyl:Man:Glu:Gal = 0.65:10.71:0.33:0.67:1:10.41HPGPC, ESI-MSBackbone composed of (1 -> 3)-linked Gal. The branches were composed of (1 -> 5)-linked Ara, (1 -> 2)-linked Ara, (1 -> 6)-linked Gal, (1 -> 3)-linked Gal, (1 -> 4)-linked Gal and (1 -> 2,4)-linked Rha.[53]

Table 3 Antioxidant activity and mechanisms of LBPs.

Antioxidant ActivityMechanismsDoseExperiment ModelExperiment TypeRef
Reduce oxidative stress Regulating the level of MDA, SOD, GSH100, 200, and 400 mg/kgRatsIn vivo[71, 74]
Against hypoxia-induced injuryDown-regulation of miR-122300 mu g/mLCellsIn vitro[75]
Reduces hyperoxic acuteInduced activation of Nrf2 100 mg/kgMiceIn vivo[59]
Attenuates diabetic testicular dysfunctionUpregulated p-PI3K and p-Akt protein expressions 40 mg/kgMiceIn vivo[76]
Radical scavenging Free radical scavengingIC 50:1.29–3.00 mg/mL(DPPH) 0.39–1.10 mg/mL (ABTS) Chemical reagentIn vivo[77]
Regulate the activity of enzymesIncreased activity of antioxidative enzymes200–400 mg/kgRatsIn vivo[78]

Table 4 Immune regulation activity and mechanisms of LBPs.

Immune Regulation ActivityMechanismExperiment TypeRef
Enhanced macrophage endocytic and phagocytic capacities in vivoActivate transcription factors NFAT, AP-1, prompt CD25 expression, induce IL-2 and IFN-gamma gene transcription and protein secretion In vitro[85]
Regulation of immune cells Maintain high levels of T cells, prevent the increase of Tregs, promote infiltration of CD8+ T cellsIn vivo[86]
Induce the phenotypic and functional maturation of DCsUpregulate the expression of Notch and Jagged and Notch targets Hes1 and Hes5In vitro[80]
Promote the proliferation of spleen cells Increase secretion of INF-alpha and IL-6, mRNA expression of iNOS, IL-beta and IL-6 through activating phosphorylation of ERIC, JNK, p38 and p65In vitro[87]
Increased immune organ indexesPromote blood B and T lymphocyte proliferationIn vivo[81]
Improve immune responsesStimulate CD4(+) and CD8(+) T cell proliferationIn vitro[88]
Enhance the immune activityEnhance PCV2-specific IgG antibody responses, promote Th1 cytokines (IFN-gamma and TNF-alpha) and Th2 cytokine (IL-4) secretionIn vitro[82]
Enhance the immune activityInhibit cell proliferation, retard cell cycle growth, and promote apoptosisIn vitro, In vivo[89]

Table 5 Antitumor activities and mechanism of LBPs.

Antitumor ActivityMechanismTumor ModelExperiment TypeRef
Reduce cell viabilityInhibit growth of tumorMCF-7, T47D, SMMC-7721, DU145 In vitro[7, 44, 100]
Regulate apoptosis Induce apoptosisMCF-7, BIU87In vitro[100]
Regulate cell cycleArrest the cells at the G1 phaseSW480, Caco-2 cellsIn vitro[101]
Regulate immune activityEnhance immunityMiceIn vivo[84, 86]

Table 6 Neuroprotective effects and mechanisms of LBPs.

Neuroprotection EffectsMolecular MechanismExperiment TypeRef
Improve neurodegenerative diseasesIncrease the activity of Akt; regulate the expression of HSP60/HSP70; reduce caspase cascade reactionIn vitro, In vivo[107-111]
Inhibition of oxidative stressIncrease SOD, CAT and GSH-Px; decrease the ROS level, inhibit JNK pathwayIn vitro, In vivo[112-115]
Inhibition of inflammationInhibit of NF-κBIn vivo[116]
Inhibit abnormal differentiation of nerve cellsIncrease differentiation of hippocampal neuron stem cells and inhibit abnormal differentiationIn vitro[117]
Inhibition of apoptosisPromotes Bcl-2, inhibits Bax, overexpression of CytC geneIn vivo[118]
Reduce glutamate toxicityDecrease neurotoxic effects of glutamate on PC12 cells; inhibition of ROS accumulation, LDH release and Ca[2]+ overloadIn vivo[119-120]
Inhibit the tube formation of microvascular endothelial cellsNo reportIn vivo[52]
Neuroprotective agent in ischaemic retinopathiesEnhance immunoreactivity of protein kinase C alpha and attenuated glial fibrillary acidic protein expressionIn vivo[121].

Table 7 Other biological activities and mechanism of LBPs.

Biological activitiesMechanismExperiment typeRef
Attenuates diabetic testicular dysfunctionInhibition of the PI3K/Akt pathway-mediated abnormal autophagyIn vivo[76]
Inhibit the vascular lesionsRegulating p38MAPK signaling pathways, inhibiting absorption of glucose In vivo[124, 126]
Prevents against ultraviolet-induced damageActivation of Nrf2In vivo[122]
Protect the liver from hepatotoxicityRegulating oxidative stressIn vivo[62]
Alleviating effects of CCl4-induced liver fibrosisInhibition of the TLRs/NF-kappa B signaling pathway expressionIn vivo[125]
Alleviating dry-eye diseaseSchirmer's test, tear break-up time (BUT) measurementIn vivo[123]
Protects against neurotoxicity Upregulating Nrf2/HO-1 signalingIn vitro[127]
Ameliorate Cd testicular damageRegulate oxidative stressIn vivo[128]

Author Contributions

X.T., T.L., and Z.M. conceived the idea; X.T. and T.L. write the draft; Y.L., F.Z., and G.D. edited the manuscript; all authors read and approved the final manuscript.

Funding

We gratefully acknowledge financial support from National Natural Science Foundation of China (31560477), ministry of science and technology project (KY201501005), Gansu province Science Technology funding plan through Project (17YF1WA166) and Natural Science Foundation of Gansu province (18JR3RA371).

Conflicts of Interest

The author(s) declare that they have no conflicts of interest to disclose.

Abbreviations

LBPsLycium barbarum polysaccharides
WEMwater extraction method
EAMenzyme-assisted extraction method
MAMmicrowave-assisted extraction method
UAMultrasonic-assisted extraction method
SECsize exclusive chromatography
ESI-MSelectrospray ionization mass spectrometry
GC–MSgas chromatography–mass spectrometry
NMRnuclear magnetic resonance
HPGPChigh performance gel permeation chromatography

References 1 Li X.M. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int. J. Biol. Macromol. 2007; 40: 461-465. 10.1016/j.ijbiomac.2006.11.002. 17166579 2 Amagase H., Farnsworth N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011; 44: 1702-1717. 10.1016/j.foodres.2011.03.027 3 Wu D.-T., Guo H., Lin S., Lam S.-C., Zhao L., Lin D.-R., Qin W. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends Food Sci. Technol. 2018; 79: 171-183. 10.1016/j.tifs.2018.07.016 4 Potterat O. Goji (Lycium barbarum and L. chinense): Phytochemistry, Pharmacology and Safety in the Perspective of Traditional Uses and Recent Popularity. Planta Med. 2010; 76: 7-19. 10.1055/s-0029-1186218. 19844860 5 Wang H., Li J., Tao W., Zhang X., Gao X., Yong J., Zhao J., Zhang L., Li Y., Duan J.-A. Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology. Food Chem. 2018; 240: 759-766. 10.1016/j.foodchem.2017.08.026. 28946340 6 Zeng S., Liu Y., Wu M., Liu X., Shen X., Liu C., Wang Y. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lyceum. PLoS ONE. 2014; 9e97039 7 Wawruszak A., Czerwonka A., Okła K., Rzeski W. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line. Nat. Prod. Res. 2015; 30: 1 8 Tang W.-M., Chan E., Kwok C.-Y., Lee Y.-K., Wu J.-H., Wan C.-W., Chan R.Y.-K., Yu P.H.-F., Chan S.-W. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology. 2012; 20: 307-314. 10.1007/s10787-011-0107-3 9 Zhang Q.Y., Chen W.W., Zhao J.H., Xi W.P. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem. 2016; 200: 230-236. 10.1016/j.foodchem.2016.01.046 Yao R., Heinrich M., Weckerle C.S. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol. 2018; 212: 50-66. 10.1016/j.jep.2017.10.010 Wang Q., Chen S., Zhang Z. Determination of Polysaccharide Contents in Fructus Lycii. Chin. Herbal Med. 1991; 22: 67-69 Lu S.-P., Zhao P.-T. Chemical characterization of Lycium barbarum polysaccharides and their reducing myocardial injury in ischemia/reperfusion of rat heart. Int. J. Biol. Macromol. 2010; 47: 681-684. 10.1016/j.ijbiomac.2010.08.016. 20813126 Xin Y.-F., Wan L.-L., Peng J.-L., Guo C. Alleviation of the acute doxorubicin-induced cardiotoxicity by Lycium barbarum polysaccharides through the suppression of oxidative stress. Food Chem. Toxicol. 2011; 49: 259-264. 10.1016/j.fct.2010.10.028. 21056614 Tian X.M., Wang R., Zhang B.K., Wang C.L., Guo H., Zhang S.J. Impact of Lycium Barbarum Polysaccharide and Danshensu on vascular endothelial growth factor in the process of retinal neovascularization of rabbit. Int. J. Ophthalmol. 2013; 6: 59-61. 23550271 Gong H., Shen P., Jin L., Xing C., Tang F. Therapeutic effects of Lycium barbarum polysaccharide (LBP) on irradiation or chemotherapy-induced myelosuppressive mice. Cancer Biother. Radiopharm. 2005; 20: 155-162. 10.1089/cbr.2005.20.155 Chang R.C.-C., So K.-F. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far?. Cell. Mol. Neurobiol. 2008; 28: 643-652. 10.1007/s10571-007-9181-x He N., Yang X., Jiao Y., Tian L., Zhao Y. Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits. Food Chem. 2012; 133: 978-989. 10.1016/j.foodchem.2012.02.018 Xiao J., Liong E.C., Ching Y.P., Chang R.C., So K.F., Fung M.L., Tipoe G.L. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. J. Ethnopharmacol. 2012; 139: 462-470. 10.1016/j.jep.2011.11.033 Zhou Z.Q., Fan H.X., He R.R., Xiao J., Tsoi B., Lan K.H., Kurihara H., So K.F., Yao X.S., Gao H. Lycibarbarspermidines A–O, New Dicaffeoylspermidine Derivatives from Wolfberry, with Activities against Alzheimer's Disease and Oxidation. J. Agric. Food Chem. 2016; 64: 2223. 10.1021/acs.jafc.5b05274 Zhang M., Cui S.W., Cheung P.C.K., Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 2007; 18: 4-19. 10.1016/j.tifs.2006.07.013 Chen Y., Yao F., Ming K., Wang D., Hu Y., Liu J.J.M. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules. 2016; 211705. 10.3390/molecules21121705. 27983593 Masci A., Carradori S., Casadei M.A., Paolicelli P., Petralito S., Ragno R., Cesa S. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chem. 2018; 254: 377-389. 10.1016/j.foodchem.2018.01.176. 29548467 Skenderidis P., Petrotos K., Giavasis I., Hadjichristodoulou C., Tsakalof A. Optimization of ultrasound assisted extraction of of goji berry (Lycium barbarum) fruits and evaluation of extracts' bioactivity. J. Food Process. Eng. 2017; 40: 12. 10.1111/jfpe.12522 Zhao C., Yang R.F., Qiu T.Q. Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L. Sep. Purif. Technol. 2013; 120: 141-147 Zhang J., Jia S.Y., Liu Y., Wu S.H., Ran J.Y. Optimization of enzyme-assisted extraction of the Lycium barbarum polysaccharides using response surface methodology. Carbohydr. Polym. 2011; 86: 1089-1092. 10.1016/j.carbpol.2011.06.027 Liu Z.G., Dang J., Wang Q.L., Yu M.F., Jiang L., Mei L.J., Shao Y., Tao Y.D. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity. Int. J. Biol. Macromol. 2013; 61: 127-134. 10.1016/j.ijbiomac.2013.06.042. 23831533 Reverchon E., de Marco I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids. 2006; 38: 146-166. 10.1016/j.supflu.2006.03.020 Ma T., Sun X., Tian C., Luo J., Zheng C., Zhan J. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology. Int. J. Biol. Macromol. 2016; 88: 162-170. 10.1016/j.ijbiomac.2016.03.058 Zhong-Qiua H.U., Liu J.D., Wang B.L. Research on extraction technology of Lycium barbarum polysaccharides by the alkaline solution. J. Northwest A F Univ. Nat. Sci. Ed. 2008; 36: 173-178 Luo Q., Yan J., Zhang S. Isolation and purification of Lycium barbarum polysaccharides and its antifatigue effect. J. Hyg. Res. 2000; 29: 115-117 Ji X.L., Peng Q., Yuan Y.P., Liu F., Wang M. Extraction and physicochemical properties of polysaccharides from Ziziphus Jujuba cv. Muzao by ultrasound-assisted aqueous two-phase extraction. Int. J. Biol. Macromol. 2018; 108: 541-549. 10.1016/j.ijbiomac.2017.12.042. 29233708 Yin G.H., Dang Y.L. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box-Behnken statistical design. Carbohydr. Polym. 2008; 74: 603-610. 10.1016/j.carbpol.2008.04.025 Liu Y., Gong G., Zhang J., Jia S., Li F., Wang Y., Wu S. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014; 110: 278-284. 10.1016/j.carbpol.2014.03.040. 24906756 Yang R.-F., Zhao C., Chen X., Chan S.-W., Wu J.-Y. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods. 2015; 17: 903-909. 10.1016/j.jff.2015.06.045 Li X.M., Li X.L., Zhou A.G. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur. Polym. J. 2007; 43: 488-497. 10.1016/j.eurpolymj.2006.10.025 Muatasim R., Ma H.L., Yang X. Effect of multimode ultrasound assisted extraction on the yield of crude polysaccharides from Lycium Barbarum (Goji). Food Sci. Technol. 2018; 38: 160-166. 10.1590/1678-457x.14417 Gao Z., Ali Z., Khan I.A. Glycerogalactolipids from the fruit of Lycium barbarum. Phytochemistry. 2008; 69: 2856-2861. 10.1016/j.phytochem.2008.09.002. 18977006 Ouyang H.X., Li Y.Q., Xiao Q.W. Simultaneous determination of monosaccharides and oligosaccharides in Lycium barbarum L. by high performance liquid chromatography. Sichuan Da Xue Xue Bao. Yi Xue Ban = J. Sichuan Univ. Med. Sci. Ed. 2007; 38: 1040 Yang J., Wei Y.Q., Ding J.B., Li Y.L., Ma J.L., Liu J.L. Research and application of Lycii Fructus in medicinal field. Chin. Herb. Med. 2018; 10: 339-352. 10.1016/j.chmed.2018.08.006 Peng X., Tian G. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydr. Res. 2001; 331: 95-99. 10.1016/S0008-6215(00)00321-9 Huang L.J., Tian G.Y., Ji G.Z. Structure Elucidation of Glycan of Glycoconjugate LbGp3 Isolated from the Fruit of Lycium barbarum L. J. Asian Nat. Prod. Res. 1999; 1: 259-267. 10.1080/10286029908039874 Peng X.M., Huang L.J., Qi C.H., Zhang Y.X., Tian G.Y. Studies on Chemistry and Immuno-modulating Mechanism of a Glycoconjugate from Lycium barbarum L. Chin. J. Chem. 2001; 19: 1190-1197. 10.1002/cjoc.20010191206 Zhao C., Li R., He Y., Chui G. Studies on chemistry of Gouqi polysaccharides. Yie Daxue Xuebao. 1997; 29: 231-232 Zhang M., Tang X., Wang F., Zhang Q., Zhang Z. Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells. Int. J. Biol. Macromol. 2013; 61: 270-275. 10.1016/j.ijbiomac.2013.06.031. 23817098 Zhao C.J., He Y.Q., Li R.Z., Cui G.H. Chemistry and pharmacological activity of peptidoglycan from lycium barbaruml. Chin. Chem. Lett. 1996; 7: 1009-1010 Duan C.L., Qiao S.Y., Wang N.L., Zhao Y.M., Qi C.H., Yao X.S. Studies on the active polysaccharides from Lycium barbarum L. Yaoxue Xuebao. 2001; 36: 196-199 Gong G.P., Fan J.B., Sun Y.J., Wu Y.M., Liu Y., Sun W., Zhang Y., Wang Z.F. Isolation, structural characterization, and antioxidativity of polysaccharide LBLP5-A from Lycium barbarum leaves. Process. Biochem. 2016; 51: 314-324. 10.1016/j.procbio.2015.11.013 Redgwell R.J., Curti D., Wang J., Dobruchowska J.M., Gerwig G.J., Kamerling J.P., Bucheli P. Cell wall polysaccharides of Chinese Wolfberry (Lycium barbarum): Part 2. Characterisation of arabinogalactan-proteins. Carbohydr. Polym. 2011; 84: 1075-1083. 10.1016/j.carbpol.2010.12.071 Liu H., Fan Y., Wang W., Liu N., Zhang H., Zhu Z., Liu A. Polysaccharides from Lycium barbarum leaves: Isolation, characterization and splenocyte proliferation activity. Int. J. Biol. Macromol. 2012; 51: 417-422. 10.1016/j.ijbiomac.2012.05.025 Wang Z., Liu Y., Sun Y., Mou Q., Wang B., Zhang Y., Huang L. Structural characterization of LbGp1 from the fruits of Lycium barbarum L. Food Chem. 2014; 159: 137-142. 10.1016/j.foodchem.2014.02.171 Liu W., Liu Y., Zhu R., Yu J., Lu W., Pan C., Yao W., Gao X. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr. Polym. 2016; 147: 114-124. 10.1016/j.carbpol.2016.03.087 Zhou L., Huang L., Yue H., Ding K. Structure analysis of a heteropolysaccharide from fruits of Lycium barbarum L. and anti-angiogenic activity of its sulfated derivative. Int. J. Biol. Macromol. 2018; 108: 47-55. 10.1016/j.ijbiomac.2017.11.111. 29174358 Peng Q., Lv X.P., Xu Q.S., Li Y., Huang L.J., Du Y.G. Isolation and structural characterization of the polysaccharide LRGP1 from Lycium ruthenicum. Carbohydr. Polym. 2012; 90: 95-101. 10.1016/j.carbpol.2012.04.067 Gil-Chavez G.J., Villa J.A., Ayala-Zavala J.F., Heredia J.B., Sepulveda D., Yahia E.M., Gonzalez-Aguilar G.A. Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013; 12: 5-23. 10.1111/1541-4337.12005 Gomez-Guillen M.C., Gimenez B., Lopez-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011; 25: 1813-1827. 10.1016/j.foodhyd.2011.02.007 Yildirim N.C., Turkoglu S., Yildirim N., Ince O.K. Antioxidant properties of wild edible mushroom Pleurotus eryngii collected from Tunceli province of Turkey. Dig. J. Nanomater. Biostruct. 2012; 7: 1647-1654 Ding Y., Yan Y.M., Peng Y.J., Chen D., Mi J., Lu L., Luo Q., Li X.Y., Zeng X.X., Cao Y.L. In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum. Int. J. Biol. Macromol. 2019; 125: 751-760. 10.1016/j.ijbiomac.2018.12.081. 30552927 Yu N., Song N., Liu C.Y., Yang G.L. The estrogen-like protective effect of Lycium barbarum polysaccharides in reducing oxidative stress on myocardial cells from ovariectomized rats. Mol. Med. Rep. 2019; 19: 2271-2278. 10.3892/mmr.2019.9880. 30664163 Zheng G.Z., Ben H.J., Li H.Q., Li X.H., Dong T.C., Xu S.M., Yan Y.L., Sun B.K., Bai J.W., Li Y.S. Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed. Pharm. 2019; 111: 733-739. 10.1016/j.biopha.2018.12.073 Guo D.J., Cheng H.L., Chan S.W., Yu P.H.F. Antioxidative activities and the total phenolic contents of tonic Chinese Medicinal Herbs. Inflammopharmacology. 2008; 16: 201-207. 10.1007/s10787-008-8016-9. 18815744 Wang C.C., Chang S.C., Inbaraj B.S., Chen B.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010; 120: 184-192. 10.1016/j.foodchem.2009.10.005 Cheng D., Kong H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules. 2011; 16: 2542-2550. 10.3390/molecules16032542 Zhang Y., Peng B., Wang S., Liang Y.X., Yang J., So K.F., Yuan T.F. Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection. Sci. Rep. 2016; 6: 21816. 10.1038/srep21816. 26888347 Cosio M.S., Buratti S., Mannino S., Benedetti S. Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem. 2006; 97: 725-731. 10.1016/j.foodchem.2005.05.043 Liang B., Jin M., Liu H. Water-soluble polysaccharide from dried Lycium barbarum fruits: Isolation, structural features and antioxidant activity. Carbohydr. Polym. 2011; 83: 1947-1951. 10.1016/j.carbpol.2010.10.066 Niu A.J., Wu J.M., Yu D.H., Wang R. Protective effect of Lycium barbarum polysaccharides on oxidative damage in skeletal muscle of exhaustive exercise rats. Int. J. Biol. Macromol. 2008; 42: 447-449. 10.1016/j.ijbiomac.2008.02.003. 18405964 Shan X., Zhou J., Ma T., Chai Q. Lycium barbarum Polysaccharides Reduce Exercise-Induced Oxidative Stress. Int. J. Mol. Sci. 2011; 12: 1081-1088. 10.3390/ijms12021081. 21541044 Gu S., Wang P.L., Jiang R. A study on the preventive effect of Lycium barbarum polysaccharide on the development of alcoholic fatty liver in rats and its possible mechanisms. Zhonghua Gan Zang Bing Za Zhi = Zhonghua Ganzangbing Zazhi = Chin. J. Hepatol. 2007; 15: 204 Amagase H., Sun B., Borek C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr. Res. 2009; 29: 19-25. 10.1016/j.nutres.2008.11.005 Gong G.P., Dang T.T., Deng Y.N., Han J.L., Zou Z.H., Jing S., Zhang Y., Liu Q., Huang L.J., Wang Z.F. Physicochemical properties and biological activities of polysaccharides from Lycium barbarum prepared by fractional precipitation. Int. J. Biol. Macromol. 2018; 109: 611-618. 10.1016/j.ijbiomac.2017.12.017 Chen L., Li W., Qi D., Wang D. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress and inflammation in pulmonary endothelial cells. Free Radic Res. 2018; 52: 480-490. 10.1080/10715762.2018.1447105. 29502482 Liu L., Lao W., Ji Q.S., Yang Z.H., Yu G.C., Zhong J.X. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis. Int. J. Ophthalmol. 2015; 8: 11 Wu H.T., He X.J., Hong Y.K., Ma T., Xu Y.P., Li H.H. Chemical characterization of lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. Int. J. Biol. Macromol. 2010; 46: 540-543. 10.1016/j.ijbiomac.2010.02.010. 20193709 Tang L.J., Bao S.Y., Du Y., Jian Z.Y., Wuliji A.O., Ren X., Zhang C.H., Chu H.Y., Kong L., Ma H.Y. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed. Pharm. 2018; 103: 829-837. 10.1016/j.biopha.2018.04.104. 29684862 Li Q.J., Zhang Z.W., Li H., Pan X.Y., Chen S.S., Cui Z.Y., Ma J., Zhou Z.X., Xing B. Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomed. Pharm. 2019; 110: 20-28. 10.1016/j.biopha.2018.11.012. 30458344 Shi G.J., Zheng J., Han X.X., Jiang Y.P., Li Z.M., Wu J., Chang Q., Niu Y., Sun T., Li Y.X. Lycium barbarum polysaccharide attenuates diabetic testicular dysfunction via inhibition of the PI3K/Akt pathway-mediated abnormal autophagy in male mice. Cell Tissue Res. 2018; 374: 653-666. 10.1007/s00441-018-2891-1. 30073544 Skenderidis P., Kerasioti E., Karkanta E., Stagos D., Kouretas D., Petrotos K., Hadjichristodoulou C., Tsakalof A. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol. Rep. 2018; 5: 251-257. 10.1016/j.toxrep.2018.02.001. 29854596 Yang D.M., Zhang J.Q., Fei Y.F. Lycium barbarum polysaccharide attenuates chemotherapy-induced ovarian injury by reducing oxidative stress. J. Obs. Gynaecol. Res. 2017; 43: 1621-1628. 10.1111/jog.13416 Zhang X., Zhou W., Zhang Y.. Immunoregulation and Lycium Barbarum; Springer: Dordrecht, The Netherlands. 2015 Wang W., Liu M.X., Wang Y., Yang T., Li D.S., Ding F., Sun H.Z., Bai G., Li Q. Lycium barbarum Polysaccharide Promotes Maturation of Dendritic Cell via Notch Signaling and Strengthens Dendritic Cell Mediated T Lymphocyte Cytotoxicity on Colon Cancer Cell CT26-WT. Evid. Based Complement. Altern. Med. 2018. 10.1155/2018/2305683 Liu Y.L., Yin R.Q., Liang S.S., Duan Y.L., Yao J.H., Duan Y.L., Yang X.J. Effect of dietary Lycium barbarum polysaccharide on growth performance and immune function of broilers. J. Appl. Poult. Res. 2017; 26: 200-208 Bo R.N., Zheng S.S., Xing J., Luo L., Niu Y.L., Huang Y., Liu Z.G., Hu Y.L., Liu J.G., Wu Y. The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. Int. J. Biol. Macromol. 2016; 85: 294-301. 10.1016/j.ijbiomac.2015.12.089. 26763175 Lin F.Y., Lai Y.K., Yu H.C., Chen N.Y., Chang C.Y., Lo H.C., Hsu T.H. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor. Food Chem. 2008; 110: 446-453. 10.1016/j.foodchem.2008.02.023. 26049238 Wang J., Hu Y., Wang D., Liu J., Zhang J., Abula S., Zhao B., Ruan S. Sulfated modification can enhance the immune-enhancing activity of lycium barbarum polysaccharides. Cell. Immunol. 2010; 263: 219-223. 10.1016/j.cellimm.2010.04.001 Chen Z., Kwong H.T.B., Chan S.H. Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L. Int. Immunopharmacol. 2008; 8: 1663-1671. 10.1016/j.intimp.2008.07.019 Deng X.L., Luo S., Luo X., Hu M.H., Ma F.L., Wang Y.Y., Lai X.P., Zhou L. Polysaccharides from Chinese Herbal Lycium barbarum Induced Systemic and Local Immune Responses in H22 Tumor-Bearing Mice. J. Immunol. Res. 2018. 10.1155/2018/3431782 Shen C.Y., Zhang W.L., Jiang J.G. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kappa B signaling pathways in RAW264.7 cells. J. Funct. Foods. 2017; 34: 118-129. 10.1016/j.jff.2017.03.060 Bo R.N., Sun Y.Q., Zhou S.Z., Ou N., Gu P.F., Liu Z.G., Hu Y.L., Liu J.G., Wang D.Y. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. Int. J. Nanomed. 2017; 12: 6289-6301. 10.2147/IJN.S136820 Chen S.Y., Liang L.N., Wang Y., Diao J.H., Zhao C.X., Chen G., He Y.F., Luo C.L., Wu X.H., Zhang Y. Synergistic immunotherapeutic effects of Lycium barbarum polysaccharide and interferon-alpha 2b on the murine Renca renal cell carcinoma cell line in vitro and in vivo. Mol. Med. Rep. 2015; 12: 6727-6737. 10.3892/mmr.2015.4230. 26300071 Cao S.Y., Li Y., Meng X., Zhao C.N., Li S., Gan R.Y., Li H.B. Dietary natural products and lung cancer: Effects and mechanisms of action. J. Funct. Foods. 2019; 52: 316-331. 10.1016/j.jff.2018.11.004 Yuan Q.X., Zhao L.Y. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017; 65: 10383-10394. 10.1021/acs.jafc.7b03614 Khan T., Date A., Chawda H., Patel K. Polysaccharides as potential anticancer agents-A review of their progress. Carbohydr. Polym. 2019; 210: 412-428. 10.1016/j.carbpol.2019.01.064. 30732778 Chen Y., Hu M., Wang C., Yang Y., Chen J., Ding J., Guo W. Characterization and in vitro antitumor activity of polysaccharides from the mycelium of Sarcodon aspratus. Int. J. Biol. Macromol. 2013; 52: 52-58. 10.1016/j.ijbiomac.2012.09.005. 22982812 Kwok S.S., Bu Y.S., Lo A.C.Y., Chan T.C.Y., So K.F., Lai J.S.M., Shih K.C. A Systematic Review of Potential Therapeutic Use of Lycium Barbarum Polysaccharides in Disease. Biomed. Res. Int. 2019. 10.1155/2019/4615745. 30891458 Chao C.J., Chiang S.W., Wang C.C., Tsai Y.H., Wu M.S. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells. World J. Gastroenterol. 2006; 12: 4478-4484. 10.3748/wjg.v12.i28.4478. 16874858 Mao F., Xiao B., Jiang Z., Zhao J., Huang X., Guo J. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Med. Oncol. 2011; 28: 121-126. 10.1007/s12032-009-9415-5. 20066520 Miao Y., Xiao B.X., Jiang Z., Guo Y.A., Mao F., Zhao J.W., Huang X., Guo J.M. Growth inhibition and cell-cycle arrest of human gastric cancer cells by Lycium barbarum polysaccharide. Med. Oncol. 2010; 27: 785-790. 10.1007/s12032-009-9286-9. 19669955 Wang J., Zou Y., Yi L.I., Qiao W.U., Zhang B., Liu H., Zhao W., Shen B., Neurosurgery D.O. Lycium barbarum polysaccharide inhibits the growth of rat glioma by regulating the blood-brain barrier. Tumor. 2018; 38: 102-110 Zhang M., Chen H.X., Huang J., Li Z., Zhu C.P., Zhang S.H. Effect of lycium barbarum polysaccharide on human hepatoma QGY7703 cells: Inhibition of proliferation and induction of apoptosis. Life Sci. 2005; 76: 2115-2124. 10.1016/j.lfs.2004.11.009. 15826878 Shen L., Du G. Lycium barbarum polysaccharide stimulates proliferation of MCF-7 cells by the ERK pathway. Life Sci. 2012; 91: 353-357. 10.1016/j.lfs.2012.08.012. 22921303 Chen F., Ran L.W., Mi J., Yan Y.M., Lu L., Jin B., Li X.Y., Cao Y.L. Isolation, Characterization and Antitumor Effect on DU145 Cells of a Main Polysaccharide in Pollen of Chinese Wolfberry. Molecules. 2018; 2313. 10.3390/molecules23102430 Gao Q.H., Fu X., Zhang R., Wang Z., Guo M. Neuroprotective effects of plant polysaccharides: A review of the mechanisms. Int. J. Biol. Macromol. 2017; 106: S0141813017313600. 10.1016/j.ijbiomac.2017.08.075 Nelson E.D., Ramberg J.E., Best T., Sinnott R.A.J.N.N. Neurologic effects of exogenous saccharides: A review of controlled human, animal, and in vitro studies. Nutr. Neurosci. 2012; 15: 149-162. 10.1179/1476830512Y.0000000004. 22417773 Shi Z.S., Zhu L.H., Li T.T., Tang X.Y., Xiang Y.H., Han X.J., Xia L.X., Zeng L., Nie J.H., Huang Y.X. Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways. Front. Cell. Neurosci. 2017; 11: 16. 10.3389/fncel.2017.00288. 29021742 Hu X., Qu Y., Chu Q., Li W., He J. Investigation of the neuroprotective effects of Lycium barbarum water extract in apoptotic cells and Alzheimer's disease mice. Mol. Med. Rep. 2018; 17: 3599-3606. 29257339 Bie M., Lv Y., Ren C., Xing F., Cui Q., Xiao J., So K.F. Lycium barbarum polysaccharide improves bipolar pulse current-induced microglia cell injury through modulating autophagy. Cell Transplant. 2015; 24: 419-428. 10.3727/096368915X687453. 25671388 Fang F., Peng T., Yang S., Wang W., Zhang Y., Li H. Lycium barbarum polysaccharide attenuates the cytotoxicity of mutant huntingtin and increases the activity of AKT. Int. J. Dev. Neurosci. 2016; 52: 66-74. 10.1016/j.ijdevneu.2016.05.004. 27196502 Yang M., Ding J., Zhou X., Zhang X., Tao H., Wang Y., Li G.J.B.R. Effects of lycium barbarum polysaccharides on neuropeptide Y and heat-shock protein 70 expression in rats exposed to heat. Biomed. Rep. 2014; 2: 687. 10.3892/br.2014.291 Teng P., Li Y.H., Cheng W.J., Zhou L., Shen Y., Wang Y. Neuroprotective effects of Lycium barbarum polysaccharides in lipopolysaccharide-induced BV2 microglial cells. Mol. Med. Rep. 2013; 7: 1977-1981. 10.3892/mmr.2013.1442 Ho Y.S., Yu M.S., Yang X.F., So K.F., Yuen W.H., Chang R.C.C. Neuroprotective Effects of Polysaccharides from Wolfberry, the Fruits of Lycium barbarum, Against Homocysteine-induced Toxicity in Rat Cortical Neurons. J. Alzheimers Dis. 2010; 19: 813-827. 10.3233/JAD-2010-1280 Zhao W., Pan X., Li T., Zhang C., Shi N.J.O.M. Cellular Longevity, Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells. Oxidative Med. Cell. Longev. 2016; 2016: 9826726. 10.1155/2016/9826726 Zhao Z.K., Yu H.L., Liu B., Wang H., Luo Q., Ding X.G. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury. Neural Regen. Res. 2016; 11: 1312-1321 Di Y., Suk-Yee L., Chung-Man Y., Chuen-Chung C.R., Kwok-Fai S., David W., Lo A.C. Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke. PLoS ONE. 2012; 7e33596 Olatunji O.J., Chen H., Zhou Y.J.N.L. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca2+ generation. Neurosci. Lett. 2016; 616: 111-118. 10.1016/j.neulet.2015.10.070. 26536075 Li H., Liang Y., Chiu K., Yuan Q., Lin B., Chang R.C.-C., So K.-F. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection. PLoS ONE. 2013; 8e68881. 10.1371/journal.pone.0068881 Zhu J., Zhang Y., Shen Y., Zhou H., Yu X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol. Med. Rep. 2013; 8: 1216-1220. 10.3892/mmr.2013.1608. 23904044 Pavan B., Capuzzo A., Forlani G. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp. Eye Res. 2014; 120: 50-54. 10.1016/j.exer.2013.12.006 Tengfei W., Yuxiang L., Yongsheng W., Ru Z., Lin M., Yinju H., Shaoju J., Juan D., Chengjun Z., Tao S. Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice. PLoS ONE. 2014; 9e90780 Hynd M.R., Scott H.L., Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem. Int. 2004; 45: 583-595. 10.1016/j.neuint.2004.03.007 Zhu Y., Zhao Q., Gao H., Peng X., Wen Y., Dai G. Lycium barbarum polysaccharides attenuates N-methy-N-nitrosourea-induced photoreceptor cell apoptosis in rats through regulation of poly (ADP-ribose) polymerase and caspase expression. J. Ethnopharmacol. 2016; 191: 125-134. 10.1016/j.jep.2016.05.037 Yang D., So K.F., Lo A.C.Y. Lycium barbarum polysaccharide extracts preserve retinal function and attenuate inner retinal neuronal damage in a mouse model of transient retinal ischaemia. Clin. Exp. Ophthalmol. 2017; 45: 717-729. 10.1111/ceo.12950 Liang B., Peng L., Li R., Li H., Mo Z., Dai X., Jiang N., Liu Q., Zhang E., Deng H.J.C. Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cell. Mol. Biol. Lett. 2018; 23: 18. 10.1186/s11658-018-0084-2. 29743894 Chien K.J., Horng C.T., Huang Y.S., Hsieh Y.H., Wang C.J., Yang J.S., Lu C.C., Chen F.A. Effects of Lycium barbarum (goji berry) on dry eye disease in rats. Mol. Med. Rep. 2018; 17: 809-818. 10.3892/mmr.2017.7947. 29115477 Wang G., Ju S., Yang B.H., Yan C.C., Cao X., Zhang X.F., Wang N., Lian X.T. Inhibitory effects and related mechanisms of lycium barbarum polysaccharides on vascular lesions in type 2 diabetes mellitus. Int. J. Clin. Exp. Med. 2018; 11: 10660-10666 Gan F., Liu Q., Liu Y.H., Huang D., Pan C.L., Song S.Q., Huang K.H. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kappa B signaling pathway expression in wistar rats. Life Sci. 2018; 192: 205-212. 10.1016/j.lfs.2017.11.047 Tang H.L., Chen C., Wang S.K., Sun G.J. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Int. J. Biol. Macromol. 2015; 77: 235-242. 10.1016/j.ijbiomac.2015.03.026. 25819220 Cao S.M., Du J.L., Hei Q.H. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp. Ther. Med. 2017; 14: 4919-4927. 10.3892/etm.2017.5127. 29201196 Varoni M.V., Gadau S.D., Pasciu V., Baralla E., Serra E., Palomba D., Demontis M.P. Investigation of the effects of Lycium barbarum polysaccharides against cadmium induced damage in testis. Exp. Mol. Pathol. 2017; 103: 26-32. 10.1016/j.yexmp.2017.06.003

By Xiaojing Tian; Tisong Liang; Yuanlin Liu; Gongtao Ding; Fumei Zhang and Zhongren Ma

Reported by Author; Author; Author; Author; Author; Author

Titel:
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review
Autor/in / Beteiligte Person: Ding, Gongtao ; Liang, Tisong ; Tian, Xiaojing ; Liu, Yuanlin ; Ma, Zhongren ; Fumei, Zhang
Link:
Zeitschrift: Biomolecules, Jg. 9 (2019-08-01), Heft 9
Veröffentlichung: MDPI AG, 2019
Medientyp: unknown
Schlagwort:
  • Antitumor activity
  • chemistry.chemical_classification
  • 0303 health sciences
  • Lycium barbarum polysaccharides
  • biology
  • Chemistry
  • immune regulation
  • Immune regulation
  • lcsh:QR1-502
  • antioxidant activity
  • Computational biology
  • biology.organism_classification
  • Polysaccharide
  • Biochemistry
  • lcsh:Microbiology
  • structural characterization
  • 03 medical and health sciences
  • 0302 clinical medicine
  • Characterization methods
  • 030220 oncology & carcinogenesis
  • Extraction methods
  • antitumor activity
  • Lycium
  • Molecular Biology
  • 030304 developmental biology
Sonstiges:
  • Nachgewiesen in: OpenAIRE
  • Sprachen: English
  • Language: English
  • Rights: OPEN

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -