Zum Hauptinhalt springen

UC and BUC plane partitions

Zhang, Shengyu ; Yan, Zhaowen
In: European Physical Journal C: Particles and Fields, Jg. 84 (2024), Heft 4, S. 1-17
Online academicJournal

UC and BUC plane partitions 

This paper is concerned with the investigation of UC and BUC plane partitions based upon the fermion calculus approach. We construct generalized the vertex operators in terms of free charged fermions and neutral fermions and present the interlacing (strict) 2-partitions. Furthermore, it is showed that the generating functions of UC and BUC plane partitions can be written as product forms.

Keywords: 17B80; 35Q55; 37K10

Introduction

Free charged fermions and neutral fermions proposed by Kyoto school [[1]–[5]] play a crucial role in construction of τ -functions of integrable systems such as KP and BKP hierarchies. Tsuda [[6]] introduced the universal character (UC) hierarchy which is the generalization of KP hierarchy. Then Ogawa [[7]] constructed UC hierarchy of B-type (BUC hierarchy) which can be regarded as the extension of BKP hierarchy. The algebraic structures of UC and BUC hierarchies have been well discussed based upon the free fermions and neutral fermions [[6]–[8]]. By means of fermion calculus [[5]], the relations between vertex operators and KP plane partitions have been developed [[9]]. Fermionic approach is a extremely useful tool in exploring the structure and properties of integrable systems. Ünal [[10]] presented the τ -functions of the KP and BKP hierarchies as determinants and Pfaffians with charged free fermions and neutral free fermions.

Plane partitions are generated in crystal melting model [[12]] which have widely applications in various fields of mathematics and physics, such as statistical models, number theory and representation theory. The generating function of plane partitions describes the characteristics of plane partitions which has widely application in combinatorics [[14]], statistical mechanics [[16]] and integrable systems [[18]]. Okounkov et al. [[19]] analyzed generating function for plane partitions in terms of vertex operators expressed as exponentials of bilinear in fermions. Then the partition functions of the topological string theory have been developed by the fermion calculus approach [[20]]. Recently, Wang et al. [[21]] investigated 3-dimensional (3D) Boson representation of W1+ algebra and studied Littlewood-Richardson rule for 3-Jack polynomials by acting 3D Bosons on 3D Young diagrams (plane partitions). By using the fermion calculus approach, Foda et al. [[9], [23]] established the product forms for the generating function of KP and BKP plane partitions based on the KP free charge fermions and BKP neutral fermions, respectively. It is also proved the generating function is a special τ -function of the 2D Toda lattice. The aim of this paper is to investigate the generating function of plane partitions for UC and BUC hierarchies.

The paper is organized as follows. Section 2 provides a review of the fundamental facts of free fermions, plane partitions and generating functions. Section 3 is devoted to investigation of the UC plane partitions by fermion calculus approach. We introduce the interlacing partitions are presented with half-integers and construct interlacing 2-partitions, from which a product form of the generating function for UC plane partitions are derived. In Sect. 4, By introducing generating interlacing strict 2-partitions, we study the generating function for BUC plane partitions. The last section is conclusions and discussions.

Preliminaries

In this section, we mainly retrospect basic facts about free fermions, plane partitions and generating functions [[5], [23]–[26]].

Charged fermions and UC hierarchy

ψm,ψm, ϕm and ϕm (mZ+12) are charged fermions, the charge of the fermions is given by

Fermion

ψn

ψn

ϕn

ϕn

Charge

(1, 0)

(-1,0)

(0, 1)

(0,-1)

Algebra A over C is generated by the commutation relations

2.1 [ψm,ψn]+=[ψm,ψn]+=0,[ψm,ψn]+=δm+n,0,[ϕm,ϕn]+=[ϕm,ϕn]+=0,[ϕm,ϕn]+=δm+n,0,[ψm,ϕn]=[ψm,ϕn]=[ψm,ϕn]=[ψm,ϕn]=0,

Graph

and ψn2=ψn2=ϕn2=ϕn2=0.

A Maya diagram is made up of black and white stones lined up along the real line, indexed by half-integers. It is required that far away to the right (when n0 ) all the stones are black, whereas far away to the left (when n0), they are all white. By writing αjZ+12 for the position of the black stone, we can describe a Maya diagram as an increasing sequence of half-integers

2.2 α={αj}j1=(α1,α2,α3,...)withα1<α2<α3<,

Graph

that satisfies the following conditions

2.3 (i)αj<αj+1for allj1,(ii)αj+1=αj+1for all sufficiently largej.

Graph

The right state corresponding to the Maya diagram α is defined as

2.4 |α=|α1,α2,α3.

Graph

A left action of the fermions is given by the following rules

2.5 ψn|α=(-1)i-1|...,αi-1,αi+1,...,ifαi=-nfor somei,0,otherwise,

Graph

2.6 ψn|α=(-1)i|...,αi,n,αi+1,...,ifαi<n<αi+1for somei,0,otherwise.

Graph

In particular,

2.7 ψn|α=|α2,α3,...forα1=-n,

Graph

2.8 ψn|α=|n,α1,α2,...forn<α1.

Graph

Similarly, a Maya diagram can also be represented as

2.9 α={αj}j1=(...,α3,α2,α1)with<α3<α2<α1,

Graph

where αjZ+12 denotes the position of the white stone and αj+1=αj-1 for all sufficiently large j. The left state corresponding to the Maya diagram α is denoted as

2.10 α|=...,α3,α2,α1|.

Graph

A right action of the fermions is given by

2.11 α|ψn=(-1)i...,αi+1,n,αi,...|,ifαi+1<n<αifor somei,0,otherwise,

Graph

2.12 α|ψn=(-1)i-1...,αi+1,αi-1,...|,ifn=-αifor somei,0,otherwise,

Graph

while ϕ and ϕ have respectively the same action as ψ and ψ, except replacing ψ with ϕ. Particularly, the vacuum state |vac and the dual vacuum state vac| are defined as

2.13 |vac=|12,32,...andvac|=...,-32,-12|,

Graph

which satisfy

2.14 ψn|vac=ψn|vac=ϕn|vac=ϕn|vac=0forn>0,vac|ψn=vac|ψn=vac|ϕn=vac|ϕn=0forn<0.

Graph

The charged fermionic Fock space F and the dual Fock space F are generated by

2.15 F=defA·|vac=a|vacaA,F=defvac|·A={vac|aaA},

Graph

where

2.16 a=ψm1ψmrψn1ψnsϕm~1ϕm~iϕn~1ϕn~j.

Graph

The vector subspace of F with charge (l1,l2) is written as Fl1,l2. Consider a pairing :F×FC denoted by

2.17 vac|a,b|vacvac|a·b|vac=ab,

Graph

where is called the vacuum expectation value. The following properties hold

2.18 vac|vac=1,ψmψn=ϕmϕn=δm+n,0(m>0),0(otherwise).

Graph

The UC hierarchy is a system satisfying the following bilinear identity

2.19 jZ+1/2ψ-j|uψj|u=jZ+1/2ϕ-j|uϕj|u=0,

Graph

where |uF0,0 has charge (0, 0).

Define the colon operator : : as

2.20 :ψmψn:=ψmψn-ψmψn,:ϕmϕn:=ϕmϕn-ϕmϕn.

Graph

Consider the operators Hn and H~n (nZ),

2.21 Hn=jZ+1/2:ψ-jψj+n:,H~n=jZ+1/2:ϕ-jϕj+n:.

Graph

Then the following properties hold

2.22 [Hn,ψm]=ψm+n,[Hn,ψm]=-ψm+n,[Hm,Hn]=mδm+n,0,[H~n,ϕm]=ϕm+n,[H~n,ϕm]=-ϕm+n,[H~m,H~n]=mδm+n,0.

Graph

Noting

2.23 Hn|vac=H~n|vac=0ifn>0.

Graph

The operators called Hamiltonian are defined as

2.24 H±(x,y;x,y)=n±Nxn-1nynHn+yn-1nxnH~n,

Graph

along with the generating functions of charged fermions

2.25 ψ(k)=nZ+1/2ψnk-n-1/2,ψ(k)=nZ+1/2ψnk-n-1/2,ϕ(k)=nZ+1/2ϕnk-n-1/2,ϕ(k)=nZ+1/2ϕnk-n-1/2.

Graph

For convenience, H±(x,y;x,y) is represented as H±(x,y).

Proposition 2.1

The commutative relations between the Hamiltonian H±(x,y) and generating functions of charged fermions are as follows

2.26 [H±(x,y),ψ(k)]=ξ±(x-~y,k)ψ(k),[H±(x,y),ψ(k)]=-ξ±(x-~y,k)ψ(k),[H±(x,y),ϕ(k)]=ξ±(y-~x,k)ϕ(k),[H±(x,y),ϕ(k)]=-ξ±(y-~x,k)ϕ(k),

Graph

where

2.27 ξ±(x,k)=n±Nxnkn,~y=y1,12y2,13y3,....

Graph

Proof

By means of Eqs. (2.22) and (2.24), we obtain

2.28 [H±(x,y),ψ(k)]=nNmZ+1/2x±n-1±ny±n·[H±n,ψm]·k-m-12=n±Nxn-1nynknmZ+1/2ψmk-m-1/2=ξ±(x-~y,k)ψ(k).

Graph

The other formulas can be proved in the same way.

Lemma 2.2

The following equations hold

2.29 eH±(x,y)ψ(k)e-H±(x,y)=eξ±(x-~y,k)ψ(k),eH±(x,y)ψ(k)e-H±(x,y)=e-ξ±(x-~y,k)ψ(k),eH±(x,y)ϕ(k)e-H±(x,y)=eξ±(y-~x,k)ϕ(k),eH±(x,y)ϕ(k)e-H±(x,y)=e-ξ±(y-~x,k)ϕ(k).

Graph

Proof

From the Eq. (2.26) , it follows that

2.30 eH±(x,y)ψ(k)e-H±(x,y)=ψ(k)+[H±(x,y),ψ(k)]+12![H±(x,y),[H±(x,y),ψ(k)]]+=ψ(k)+ξ±(x-~y,k)ψ(k)+12!ξ±2(x-~y,k)ψ(k)+=eξ±(x-~y,k)ψ(k).

Graph

Using the similar procedure, we can prove other equations.

Remark 2.3

Under the reduction ϕm=ϕm=0, Eq. (2.19) leads to bilinear identity of KP hierarchy. The Eqs. (2.1)–(2.29) leads to definitions and properties in KP hierarchy.

Neutral fermions and BUC hierarchy

In this section, we introduce neutral fermions ϕn and ϕ¯m (n,mZ), which are generators of the algebra A~ over C and satisfy

2.31 [ϕm,ϕn]+=[ϕ¯m,ϕ¯n]+=(-1)mδm+n,0,[ϕm,ϕ¯n]=0,ϕ02=ϕ¯02=12.

Graph

The neutral fermionic Fock space F~ and the dual Fock space F~ can be defined as

2.32 F~=defA~·|0=a|0|aA~,F~=def0|·A~={0|aaA~},

Graph

where the vacuum state |0 and the dual vacuum state 0| are denoted by

2.33 ϕn|0=ϕ¯n|0=0forn<0,0|ϕn=0|ϕ¯n=0forn>0.

Graph

Introduce the operators Hm and H¯m (mNodd)

2.34 Hm=12jZ(-1)j+1ϕjϕ-j-m,H¯m=12jZ(-1)j+1ϕ¯jϕ¯-j-m.

Graph

Note that

2.35 [Hm,ϕn]=ϕn-m,[H¯m,ϕ¯n]=ϕ¯n-m,[Hm,Hn]=[H¯m,H¯n]=m2δm+n,0.

Graph

In particular,

2.36 Hm|0=H¯m|0=0ifm>0.

Graph

The Hamiltonian is written as

2.37 H±(x,y)=l±Noddxl-2lylHl+yl-2lxlHl¯.

Graph

It should be noted that BUC hierarchy satisfies the bilinear identity, which is given in [[7]].

Lemma 2.4

For the generating functions of neutral fermions,

2.38 ϕ(k)=nZϕnkn,ϕ¯(k)=nZϕ¯nkn,

Graph

we have

2.39 eH±(x,y)ϕ(k)e-H±(x,y)=eζ±(x-2~y,k)ϕ(k),eH±(x,y)ϕ¯(k)e-H±(x,y)=eζ±(y-2~x,k)ϕ¯(k),

Graph

where

2.40 ζ±(x,k)=n±Noddxnkn,~y=y1,13y3,15y5,....

Graph

Proof

From Eqs. (2.35) and (2.37), we obtain

2.41 H±(x,y),ϕ(k)=l±Noddxl-2lylklϕ(k)=ζ±(x-2~y,k)ϕ(k),H±(x,y),ϕ¯(k)=l±Noddyl-2lxlklϕ¯(k)=ζ±(y-2~x,k)ϕ¯(k).

Graph

Therefore, we have

2.42 eH±(x,y)ψ(k)e-H±(x,y)=eζ±(x-~y,k)ψ(k).

Graph

The proof of the other formula is quite similar, so is omitted.

Consider the neutral fermion vertex operators

2.43 Υ+(z)=eH+(z)=expn+Nodd2nz-nHn,Υ-(z)=e-H-(z)=expn+Nodd2nznH-n,

Graph

where

2.44 H+(z)=n+Nodd2nz-nHn,H-(z)=-n+Nodd2nznH-n.

Graph

Plane partitions

A partition (strict partition) is a non-increasing (strictly decreasing) sequence consisting of non-negative integers, denoted as α=(α1,α2,...), with weights |α|=i1αi. Define a partition α=(α1,α2,...), which is obtained by taking the transpose of α. Suppose that there are r nodes on the main diagonal of partitions α and set ti=αi-i, pi=αi-i for 1ir, we have p1>p2>>pr0, t1>t2>>tr0. The partition α can be also expressed as

2.45 α=(t1,t2,...,tr|p1,p2,...,pr).

Graph

A hook refers to the set of boxes

2.46 h(p,t|j)=k=0p(j+k,j)l=0t(j,j+l),p0,t0.

Graph

The partition α can be denoted by the hook as

2.47 α=j=1rh(pj,tj|j),

Graph

where r1, p1>>pr0 and t1>>tr0.

Example 2.5

The partition α=(4,2,0|3,1,0) in Fig. 1 can be constructed by a set of hooks, where h(3,4|1)=k=03(1+k,1)l=04(1,1+l), h(1,2|2)=(2,2), (3,2),(2,3),(2,4) and h(0,0|3)=(3,3).

Graph: Fig. 1 Partition α=(4,2,0|3,1,0)

For the partitions α=(α1,α2,...) and β=(β1,β2,...), we say that β interlaces α and write αβ, which is defined by the following relation

2.48 αβα1β1α2β2,

Graph

where α1α20 and β1β20. Consider the set

2.49 Dα=j=1rh(pj,tj|j)|pjpjpj-1,tjtjtj+1+1,1jr,

Graph

where tr+10 and h(-1,tr|r). All partitions that intersect α and β are contained in Dα.

Let a strict partitions α~=(m1,m2,...,m2r), the right state and left state corresponding to α~ can be written as

2.50 |α~:=(-1)rωϕm1ϕm2r|0=(-1)rωj=12rϕmj|0,α~|:=(-1)r+|α~|ω0|ϕ-m2rϕ-m1=(-1)r+|α~|ω0|j=12rϕ-mj,

Graph

where

2.51 m1>>m2r0,ω:=1,m2r1,2,m2r=0.

Graph

Lemma 2.6

[[9]] Setting α~=(m1,...,m2r), from Eqs. (2.43) and (2.50), the following relations hold

2.52 β~|Υ+(z)|α~=2n(β~|α~)z|β~|-|α~|,β~α~andn(β~)=n(α~),(-1)n(α~)2n(β~|α~)+12z|β~|-|α~|,β~α~andn(β~)=n(α~)-1,0,otherwise,

Graph

2.53 α~|Υ-(z)β~=2n(β~|α~)z|α~|-|β~|,β~α~andn(β~)=n(α~),(-1)n(α~)2n(β~|α~)+12z|α~|-|β~|,β~α~andn(β~)=n(α~)-1,0,otherwise.

Graph

Graph: Fig. 2 A 3-dimensional view of a plane partition π. The value of πij denotes the number of boxes stacked at the location

Graph: Fig. 3 A 2-dimensional view of the plane partition in Fig. 2. The sequence of values covered in the slice is the corresponding partition. In particular, π0=(4,4,1) and |π|=31

Graph: Fig. 4 A 2-dimensional view of a strict plane partition π~. The sequence of values covered in the slice are strictly decreasing. The difference between Fig. 4 and Fig. 3 is the main diagonal

A plane partition π is a set of non-negative integers πij which satisfies

2.54 πijπ(i+1)j,πijπi(j+1),limiπij=limjπij=0,fori,j1.

Graph

Each plane partition can be represented as a composition of specific partitions, denoted as (...,π-1,π0,π1,...). Indicate πi as

2.55 πi=(π1(i+1),π2(i+2),π3(i+3),...)fori0,(π(-i+1)1,π(-i+2)2,π(-i+3)3,...)fori-1,

Graph

then the plane partition π satisfies

2.56 =π-Mπ-2π-1π0π1π2πN=,

Graph

for sufficiently large M,NN and the weight |π|=i=-MN|πi|.

A strict plane partition π~ satisfies

2.57 π~ijπ~(i+1)j,π~ijπ~i(j+1),π~ij>π~(i+1)(j+1),limiπ~ij=limjπ~ij=0,

Graph

for all integers i,j1.

For a strict plane partition π~, we refer to the set of all connected boxes as paths, which are connected horizontal plateaux in the 3-dimensional view. p(π~) denotes the number of paths possessed by π~. For strict plane partitions π~i and π~j, n(π~i) represents the number of nonzero elements in π~i and n(π~i|π~j) represents the number of non-zero elements in π~i but not in π~j.

The generating function for plane partitions is given by

2.58 πis aplane partitionq|π|=n=111-qnn.

Graph

The generating function for strict plane partitions can be expressed as

2.59 πis a strictplane partition2p(π)q|π|=n=11+qn1-qnn.

Graph

UC plane partitions

In this section, we construct generalized charged fermion vertex operators and investigate interlacing 2-partitions. By means of fermion calculus approach, the generating function for UC plane partitions has been developed.

Generalized charged fermion vertex operators

Introduce

3.1 xn-1nyn=-z-nn,yn-1nxn=-v-nn,n±N,

Graph

where z and v are indeterminate. The Hamiltonian H±(x,y) can be rewritten as

3.2 H+(z,v)=n=1-z-nnHn-v-nnH~n,H-(z,v)=n=1znnH-n+vnnH~-n.

Graph

Let us define the generalized charged fermion vertex operators

3.3 Γ+(z,v)=eH+(z,v)=exp-n=1z-nnHn+v-nnH~n,Γ-(z,v)=e-H-(z,v)=exp-n=1znnH-n+vnnH~-n.

Graph

It is easy to derive

3.4 Γ+(z,v)|vac=|vac,vac|Γ-(z,v)=vac|.

Graph

Taking ξ±(x-~y,k)=ξ±(z,k) and ξ±(y-~x,k)=ξ±(v,k), we have

3.5 ξ±(x-~y,k)=ξ±(z,k)=n=11nkz±n=±ln1-kz±1,ξ±(y-~x,k)=ξ±(v,k)=n=11nkv±n=±ln1-kv±1.

Graph

Proposition 3.1

The vertex operators Γ+(z,v) and Γ-(z,v) satisfy the following relations

3.6 Γ+(z,v)ψnΓ+-1(z,v)=ψn-1zψ(n+1),Γ+(z,v)ψnΓ+-1(z,v)=m=0ψ(n+m)zm,Γ--1(z,v)ψnΓ-(z,v)=m=0zmψ(n-m),Γ--1(z,v)ψnΓ-(z,v)=ψn-zψ(n+1),Γ+(z,v)ϕnΓ+-1(z,v)=ϕn-1vϕ(n+1),Γ+(z,v)ϕnΓ+-1(z,v)=m=0ϕ(n+m)vm,Γ--1(z,v)ϕnΓ-(z,v)=m=0vmϕ(n-m),Γ--1(z,v)ϕnΓ-(z,v)=ψn-vϕ(n+1).

Graph

Proof

We only prove the first formula of Eq. (3.6), other formulas can be proved similarly. By means of Eqs. (2.26), (2.29) and (3.5), we get

3.7 Γ+(z,v)ψ(k)Γ+-1(z,v)=eH+(z,v)ψ(k)e-H+(z,v)=1-kzψ(k).

Graph

It follows from Eq. (2.25) that

3.8 nZ+1/2Γ+(z,v)ψnk-n-12Γ+-1(z,v)=nZ+1/2ψnk-n-12-ψnzk-n+12.

Graph

Comparing the orders of k on both sides yields

3.9 Γ+(z,v)ψnΓ+-1(z,v)=ψn-1zψ(n+1).

Graph

The operators H+(z,v) and H-(z,v) satisfy

[H+(z,v),-H-(z,v)]=m=1n=11mnz-m(z)n[Hm,H-n]+m=1n=11mnv-m(v)n[H~m,H~-n]=ln1-zz-1+ln1-vv-1.

Graph

Then

3.10 Γ+(z,v)Γ-(z,v)=e[H+(z,v),-H-(z,v)]Γ-(z,v)Γ+(z,v)=1-zz-11-vv-1Γ-(z,v)Γ+(z,v).

Graph

Remark 3.2

The vertex operators Γ+(z,v) and Γ-(z,v) are reduced to the charged fermion vertex operators Γ+(z) and Γ-(z) by deleting the variables ϕm,ϕm and v, respectively. Then Eqs. (3.4)–(3.10) lead to the properties for KP hierarchy.

Generating interlacing 2-partitions

If the Maya diagram has charge 0, there is a one-to-one correspondence between the Maya diagram and the partition. The right state corresponding to partitions α and β in space F0,0 can be represented as

3.11 |α,β:=(-1)κ+κ~ψm1ψmrψn1ψnrϕm~1ϕm~sϕn~1,...ϕn~s|vac,=(-1)κ+κ~j=1rψm~jk=1rψn~kj~=1sϕm~j~k~=1sϕn~k~|vac,

Graph

where κ=k=1r(mk+12)+k, κ~=k=1sm~k+12+k, m1<<mr<0,n1<<nr<0, m~1<<m~s<0 and n~1<<m~s<0. The left state has a similar representation in the charge (0, 0) sector of the dual Fock space F,

3.12 α,β|:=(-1)κ+κ~vac|ϕm~sϕm~1ϕn~sϕn~1ψnrψn1ψmrψm1=(-1)κ+κ~vac|j~=1sϕm~j~k~=1sϕn~k~j=1rψnjk=1rψmk,

Graph

where κ=k=1r(mk-12)+k,κ~=k=1sm~k -12+k,0<m1<<mr,0<n1<<nr,0<m~1<<m~s and 0<n~1<<n~s.

Define 2-partition χ and write (χ)=(α,β), which represents a pair of partitions α and β. Then we have |χ=|α,β, χ|=α,β| and the weight |χ|=|α|+|β|. Let 2-partitions (χ)=(α,β) and (χ¯)=(α¯,β¯), we say that (χ¯) interlaces (χ), and write (χ)(χ¯),

3.13 (χ)(χ¯)αα¯andββ¯.

Graph

In particular, if β=, 2-partition χ is reduced to the partition α. Equations (3.11) and (3.12) lead to

3.14 |α:=(-1)κψm1ψmrψn1ψnr|vac=(-1)κj=1rψmjk=1rψnk|vac,α|:=(-1)κvac|ψnrψn1ψmrψm1=(-1)κvac|j=1rψnjk=1rψmk.

Graph

Definition 3.3

An 'UC plane partition' is defined as (...,χ-1,χ0,χ1,...), which denotes a pair of plane partitions and satisfies

3.15 =χ-Mχ-2χ-1χ0χ1χ2χN=,

Graph

where the weight of the UC plane partition is the sum of the weights of these 2-partitions.

Example 3.4

The UC plane partition (χ-3,χ-2,χ-1,χ0,χ1,χ2,χ3,χ4) in Fig. 5 represents a pair of plane partitions π=(α-3,α-2,α-1,α0,α1,α2,α3,α4) and π~=(β-3,β-2,β-1,β0,β1,β2,β3,β4), where (χi)=(αi,βi) and the weight is i=-34|αi|+|βi|=61.

Graph: Fig. 5 The UC plane partition (χ-3,χ-2,χ-1,χ0,χ1,χ2,χ3,χ4)

Lemma 3.5

Let |α and α| be states corresponding to the partition α in the Fock space F and the dual Fock space F, which are described in Eq. (3.14). Then we have

3.16 β|Γ+(z)|α=z|β|-|α|,βα,0,otherwise,

Graph

3.17 α|Γ-(z)|β=z|α|-|β|,βα,0,otherwise.

Graph

Proof

Set n(r+1)12. From Eqs. (3.6) and (3.14), one obtains

3.18 Γ+(z)|α=(-1)κj=1r(Γ+(z)ψmjΓ+-1(z))×k=1r(Γ+(z)ψnkΓ+-1(z))Γ+(z)|vac=(-1)κj=1r(ψmj-1zψ(mj+1))·T|vac,

Graph

where

3.19 T|vac=k=1ri=01ziψ(nk+i)|vac=i=01ziψ(n1+i)i=01ziψ(n2+i)i=01ziψ(nr+i)|vac.

Graph

The following equation holds

3.20 i=01ziψ(nk+i)=i=0-nk+n(k+1)-11ziψ(nk+i)+1znk+1-nki=01ziψ(n(k+1)+i),1kr-1.

Graph

Using the commutation relations (2.1), we have

3.21 i=01ziψ(n+i)i=01ziψ(n+i)=0.

Graph

From Eqs. (2.14), (3.20) and (3.21), we obtain

3.22 T|vac=i=0-n1+n2-11ziψ(n1+i)(i=0-n2+n3-11ziψ(n2+i))(i=0-nr+12-11ziψ(nr+i))|vac.

Graph

Therefore

3.23 Γ+(z)|α=(-1)κj=1r(ψmj-1zψ(mj+1))×k=1r(i=0-nk+n(k+1)-11ziψ(nk+i))|vac.

Graph

Set

3.24 pj=-mj-12,tj=-nj-12,1jr,t(r+1)=-n(r+1)-12-1,h(-1,-nr-12|r),-mj-mj-mj-1,-nj-nj-nj+1+1.

Graph

It can be clearly found that the terms of the expansion of the Eq. (3.23) contain all of the partitions in Dα, accompanied by the weighting factor z. Each weighted partition can be expressed as

3.25 j=1rzmj-mjznj-njk=1rh(-mk-12,-nk-12|k).

Graph

The powers of z can be written as

3.26 j=1r(mj+nj-mj-nj)=|β|-|α|,

Graph

where

3.27 α=j=1rh(-mj-12,-nj-12|j),β=j=1rh(-mj-12,-nj-12|j).

Graph

From Eqs. (3.24)–(3.27), the Eq. (3.23) can be rewritten as

3.28 Γ+(z)|α=βαz|β|-|α||β.

Graph

A similar proof for the left state yields

3.29 α|Γ-(z)=(-1)κvac|j=1ri=0-n(j-1)+nj-1ziψ(nj-i)×k=1r(ψmk-zψ(mk-1)).

Graph

For 1jr, let

3.30 pj=m(r+1)-j-12,tj=n(r+1)-j-12,tr+1=n0-12-1,h(-1,n1-12|r),m(r+1)-jm(r+1)-jm(r+1)-j-1,n(r+1)-jn(r+1)-jn(r+1)-j+1.

Graph

Then one obtains

3.31 α|Γ-(z)=βαz|α|-|β|β|.

Graph

Lemma 3.6

Let the states corresponding to the 2-partition (χ)=(α,β) be |χ=|α,β and χ|=α,β|. The following relations hold

3.32 χ|Γ+(z,v)|χ=α,β|Γ+(z,v)|α,β=z|α|-|α|v|β|-|β|,αα,ββ,0,otherwise,

Graph

3.33 χ|Γ-(z,v)|χ=α,β|Γ-(z,v)|α,β=z|α|-|α|v|β|-|β|,αα,ββ,0,otherwise.

Graph

Proof

By means of the Eq. (3.11)

3.34 Γ+(z,v)|α,β=(-1)κ+κ~j=1r(Γ+(z,v)ψmjΓ+-1(z,v))×k=1r(Γ+(z,v)ψnkΓ+-1(z,v))×j~=1s(Γ+(z,v)ϕm~j~Γ+-1(z,v))×k~=1s(Γ+(z,v)ϕn~k~Γ+-1(z,v))Γ+(z,v)|vac=(-1)κj=1r(ψmj-1zψ(mj+1))×k=1r(i=01ziψ(nk+i))·T1|vac,

Graph

where

3.35 T1=(-1)κ~1j=1r(ϕmj-1vϕ(mj+1))×k=1r(i=01viϕ(nk+i))|vac.

Graph

By using the Eq. (3.16), we have

3.36 T1=ββv|β|-|β||β.

Graph

Setting |β=(-1)κ~1ϕm~1ϕm~sϕn~1ϕn~s|vac, T1 is rewritten as

3.37 T1=ββv|β|-|β|(-1)κ~1ϕm~1ϕm~sϕn~1ϕn~s|vac.

Graph

According to the commutation relations (2.1) one obtains

3.38 Γ+(z,v)|α,β=ββv|β|-|β|(-1)κ~1ϕm~1ϕm~sϕn~1ϕn~s(-1)κj=1r(ψmj-1zψ(mj+1))k=1r(i=01ziψ(nk+i))|vac=ββv|β|-|β|(-1)κ~1ϕm~1ϕm~sϕn~1ϕn~s·T2|vac,

Graph

where

3.39 T2=(-1)κj=1r(ψmj-1zψ(mj+1))×k=1r(i=01ziψ(nk+i))|vac=ααz|α|-|α||α.

Graph

Taking |α=(-1)κ1ψm1ψmrψn1ψnr|vac, combining the Eq. (3.11) gets

3.40 Γ+(z,v)|α,β=ββv|β|-|β|ααz|α|-|α|(-1)κ~1+κ1ϕm~1ϕm~sϕn~1ϕn~sψm1ψmrψn1ψnr|vac=ββααz|α|-|α|v|β|-|β||α,β.

Graph

Using the similar approach yields

3.41 α,β|Γ-(z,v)=ββααz|α|-|α|v|β|-|β|α,β|.

Graph

Setting β=, Eqs. (3.40) and (3.41) are reduced to

3.42 Γ+(z,v)|α=ααz|α|-|α||α,α|Γ-(z,v)=ααz|α|-|α|α|.

Graph

The case of α= is similar to the above.

Generating function for UC plane partitions

Consider the correlation function

3.43 SA(p,q)=vac|i=1Γ+(p-2i+12,q-2i+12)×k=1Γ-(p2k-12,q2k-12)|vac,

Graph

where p and q are indeterminate. Set 2-partition (χ)=(α,β), and insert χ|χχ| in the middle of a pair of multiplicative vertex operators. It follows that

3.44 SA(p,q)=χis a2-partitionvac|i=1Γ+(p-2i+12,q-2i+12)|χ×χ|k=1Γ-(p2k-12,q2k-12)|vac=αandβare partitionsvac|i=1Γ+(p-2i+12,q-2i+12)|α,β×α,β|k=1Γ-(p2k-12,q2k-12)|vac.

Graph

By means of Eqs. (3.40)–(3.42), the generated weights are of the form

3.45 i=1Mα-i,β-i|Γ+(p-2i+12,q-2i+12)|α-i+1,β-i+1×k=1Nαk-1,βk-1|Γ-(p2k-12,q2k-12)|αk,βk=j=-MNp|αj|q|βj|.

Graph

Set (χj)=(αj,βj) and α-M1=αN1=β-M2=βN2=, then we have

3.46 =(χ-M)(χ-2)(χ-1)(χ0)(χ1)(χ2)(χN)=,

Graph

where M=max{M1,M2}, N=max{N1,N2} and -MjN. Note that the plane partition π consists of αj and the plane partition π consists of βj. Hence interlacing relation above indicates

3.47 =α-M==α-M1α-2α-1α0α1α2αN1==αN=,=β-M==β-M2β-2β-1β0β1β2βN2==βN=.

Graph

The Eq. (3.45) can be rewritten as

3.48 j=-MNp|αj|q|βj|=i=-M1N1p|αi|k=-M2N2q|βk|.

Graph

Then we derive the generating function for UC plane partitions

3.49 SA(p,q)=πandπareplane partitionsp|π|q|π|.

Graph

On the other hand, by using the Eqs. (3.4) and (3.10), we can express the generating function for UC plane partitions as the product of the generalized MacMahon's formula

3.50 SA(p,q)=n1=111-pn1m1=111-qm1vac|×j=2Γ+(p-2j+12,q-2j+12)×k=1Γ-(p2k-12,q2k-12)|vac==n=111-pnnm=111-qmm.

Graph

BUC plane partitions

In this section, the BUC plane partitions will be developed. By using the fermion calculus method, we construct generalized neutral fermion vertex operators. Based upon interlacing strict 2-partitions derived by the vertex operator, we investigate the properties of the generating function for BUC plane partitions.

Generalized neutral fermion vertex operators

Set

4.1 xn-2nyn=2nz-n,yn-2nxn=2nv-n,nZodd,

Graph

where z and v are indeterminate. Replacing the variables above, we obtain

4.2 H+(z,v)=n+Nodd2nz-nHn+2nv-nH¯n,H-(z,v)=-n+Nodd2nznH-n+2nvnH¯-n.

Graph

Meanwhile the generalized neutral fermion vertex operators Υ+(z,v) and Υ-(z,v) are defined as

4.3 Υ+(z,v)=eH+(z,v)=expn+Nodd2nz-nHn+2nv-nH¯n,Υ-(z,v)=e-H-(z,v)=expn+Nodd2nznH-n+2nvnH¯-n.

Graph

In particular,

4.4 Υ+(z,v)|0=|0,0|Υ-(z,v)=0|.

Graph

Taking the transformation of ζ±(x-2~y,k) and ζ±(y-2~x,k), we have

4.5 ζ±(x-2~y,k)=ζ±(z,k)=±mNodd2m(kz)±m=ln(±z+kz-k)±1,ζ±(y-2~x,k)=ζ±(v,k)=±mNodd2m(kv)±m=ln(±v+kv-k)±1.

Graph

Proposition 4.1

The following equations hold

4.6 Υ+(z,v)ϕjΥ+(-z,-v)=ϕj+2n=11znϕj-n,Υ-(-z,-v)ϕjΥ-(z,v)=ϕj+2n=1(-z)nϕj+n,Υ+(z,v)ϕ¯jΥ+(-z,-v)=ϕ¯j+2n=11znϕ¯j-n,Υ-(-z,-v)ϕ¯jΥ-(z,v)=ϕ¯j+2n=1(-z)nϕ¯j+n.

Graph

Proof

From Eqs. (2.39), (2.41) and (4.5), it is clear that

4.7 Υ+(z,v)ϕ(k)Υ+(-z,-v)=ϕ(k)(z+kz-k).

Graph

Substituting Eq. (2.38) into the above equation and comparing the orders of k, one obtains

4.8 Υ+(z,v)ϕjΥ+(-z,-v)=ϕj+2n=11znϕj-n.

Graph

Other equations can be proved with the same method.

By means of Eqs. (2.35) and (4.2), we have

4.9 [H+(z,v),-H-(z,v)]=lnz+zz-z+lnv+vv-v.

Graph

It follows that

4.10 Υ+(z,v)Υ-(z,v)=e[H+(z,v),-H-(z,v)]e-H-(z,v)eH+(z,v)=z+zz-zv+vv-v×Υ-(z,v)Υ+(z,v).

Graph

Generating interlacing strict 2-partitions

Let strict partitions α~=(m1,m2,...,m2r) and β~=(n1,n2,...,n2s). In the Fock space F~ and the dual Fock space F~, the states corresponding to α~ and β~ can be described as

4.11 |α~,β~:=(-1)r+sωωϕm1ϕm2rϕ¯n1ϕ¯n2s|0=(-1)r+sωωj=12rϕmjj=12sϕ¯nj|0,α~,β~|:=(-1)r+s+|β~|+|α~|ωω0|ϕ-n2sϕ-n1ϕ-m2r×ϕ-m1=(-1)r+s+|β~|+|α~|ωω0|j=12sϕ¯-njj=12rϕ-mj,

Graph

where m1>>m2r0, n1>>n2r0 and

4.12 ω:=1,m2r1,2,m2r=0.ω:=1,n2s1,2,n2s=0.

Graph

Denote strict 2-partition χ~ as (χ~)=(α~,β~), which possesses the same properties as 2-partition. Note that if β=, strict 2-partition (χ~)=(α~,β~) is equivalent to the strict partition α~. Eq. (4.11) leads to

4.13 |α~:=(-1)rωϕm1ϕm2r|0=(-1)rωj=12rϕmj|0,α~|:=(-1)r+|α~|ω0|ϕ-m2rϕ-m1=(-1)r+|α~|ω0|j=12rϕ-mj.

Graph

Definition 4.2

Define the 'BUC plane partition' as (...,χ~-1,χ~0,χ~1,...) which represents a pair of BKP plane partitions π~ and π~, where π~=(...,α~-1,α~0,α~1,...), π~=(...,β~-1,β~0,β~1,...) and (χ~k)=(α~k,β~k).

Lemma 4.3

Let the states corresponding to the strict 2-partition (χ~)=(α~,β~) be |χ~=|α~,β~ and χ~|=α~,β~|. Then

4.14 χ~|Υ+(z,v)|χ~=2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|,ifAholds,2n(α~|α~)z|α~|-|α~|(-1)n(β~)2n(β~|β~)+12z|β~|-|β~|,ifBholds,(-1)n(α~)2n(α~|α~)+12z|α~|-|α~|2n(β~|β~)z|β~|-|β~|,ifBholds,(-1)n(α~)+n(β~)2n(α~|α~)+n(β~|β~)+1z|α~|+|β~|-|α~|-|β~|,ifDholds,0,otherwise,

Graph

4.15 χ~|Υ-(z,v)|χ~=2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|,ifAholds,2n(α~|α~)z|α~|-|α~|(-1)n(β~)2n(β~|β~)+12z|β~|-|β~|,ifBholds,(-1)n(α~)2n(α~|α~)+12z|α~|-|α~|2n(β~|β~)z|β~|-|β~|,ifCholds,(-1)n(α~)+n(β~)2n(α~|α~)+n(β~|β~)+1z|α~|+|β~|-|α~|-|β~|,ifDholds,0,otherwise,

Graph

where (χ~)=(α~,β~) and

4.16 Astandsforα~α~,β~β~,n(α~)=n(α~)andn(β~)=n(β~),Bstandsforα~α~,β~β~,n(α~)=n(α~)andn(β~)=n(β~)-1,Cstandsforα~α~,β~β~,n(α~)=n(α~)-1andn(β~)=n(β~),Dstandsforα~α~,β~β~,n(α~)=n(α~)-1andn(β~)=n(β~)-1.

Graph

Proof

By means of Eqs. (4.6) and (4.11), one obtains

4.17 Υ+(z,v)|α~,β~=(-1)r+sωωj=12rΥ+(z,v)ϕmjΥ+(-z,-v)×k=12sΥ+(z,v)ϕ¯nkΥ+(-z,-v)Υ+(z,v)|0=(-1)rωj=12rϕmj+2i=11ziϕ(mj-i)(-1)sω×k=12sϕ¯nk+2i=11viϕ¯(nk-i)|0=T~1·T~2|0,

Graph

where

4.18 T~1=(-1)rωj=12rϕmj+2i=11ziϕ(mj-i),T~2=(-1)sωk=12sϕ¯nk+2i=11viϕ¯(nk-i).

Graph

Substituting Eq. (2.52) into Eq. (4.18), we have

4.19 T~2|0=n(β~)=n(β~)β~β~2n(β~|β~)z|β~|-|β~||β~+(-1)n(β~)2n(β~)=n(β~)-1β~β~2n(β~|β~)z|β~|-|β~||β~.

Graph

Since the assumed state is not involved in the subsequent calculations, we let

4.20 |β~=(-1)sω1ϕ¯n~1ϕ¯n~2s|0=(-1)sω1j=12sϕ¯n~j|0.

Graph

From the commutation relations (2.31), the Eq. (4.17) can be rewritten as

4.21 Υ+(z,v)|α1,α2=n(β~)=n(β~)β~β~2n(β~|β~)z|β~|-|β~|(-1)sω1ϕ¯n~1ϕ¯n~2sT~1|0+(-1)n(β~)2n(β~)=n(β~)-1β~β~2n(β~|β~)z|β~|-|β~|(-1)sω1ϕ¯n~1ϕ¯n~2sT~1|0.

Graph

It follows from Eq. (2.52) that

4.22 T~1|0=n(α~)=n(α~)α~α~2n(α~|α~)z|α~|-|α~||α~+(-1)n(α~)2n(α~)=n(α~)-1α~α~2n(α~|α~)z|α~|-|α~||α~.

Graph

Setting

4.23 |α~=(-1)rω1ϕm~1ϕm~2r|0=(-1)rω1j=12rϕm~j|0.

Graph

Applying the above results to Eq. (4.21) yields

4.24 Υ+(z,v)|α~,β~=n(α~)=n(α~)α~α~×n(β~)=n(β~)β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~||α~,β~+(-1)n(β~)2n(α~)=n(α~)α~α~×n(β~)=n(β~)-1β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~||α~,β~+(-1)n(α~)2n(α~)=n(α~)-1α~α~×n(β~)=n(β~)β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~||α~,β~+(-1)n(α~)+n(β~)2n(α~)=n(α~)-1α~α~×n(β~)=n(β~)-1β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~||α~,β~.

Graph

Similarly, it is show that

4.25 α~,β~|Υ-(z,v)=n(α~)=n(α~)α~α~×n(β~)=n(β~)β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|α~,β~|+(-1)n(β~)2n(α~)=n(α~)α~α~×n(β~)=n(β~)-1β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|α~,β~|+(-1)n(α~)2n(α~)=n(α~)-1α~α~×n(β~)=n(β~)β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|α~,β~|+(-1)n(α~)+n(β~)2n(α~)=n(α~)-1α~α~×n(β~)=n(β~)-1β~β~2n(α~|α~)z|α~|-|α~|2n(β~|β~)z|β~|-|β~|α~,β~|.

Graph

In particular, if β~=, Eqs. (4.24) and (4.25) are respectively transformed into

4.26 Υ+(z,v)|α~=n(α~)=n(α~)α~α~2n(α~|α~)z|α~|-|α~||α~+(-1)n(α~)2n(α~)=n(α~)-1α~α~2n(α~|α~)z|α~|-|α~||α~,α~|Υ-(z,v)=α~α~n(α~)=n(α~)2n(α~|α~)z|α~|-|α~|α~|+(-1)n(α~)2n(α~)=n(α~)-12n(α~|α~)z|α~|-|α~|α~|.

Graph

A similar conclusion can be obtained for α~=.

Generating function for BUC plane partitions

Define correlation function SB(t,q) as

4.27 SB(t,q)=0|i=1Υ+(t-2i+12,q-2i+12)×k=1Υ-(t2k-12,q2k-12)|0,

Graph

which provides a generating function for BUC plane partitions, where t and q are indeterminate.

Graph: Fig. 6 All the paths in Fig. 4

Proposition 4.4

For a strict plane partition π~, we have

4.28 2n(π~0)i=1M2n(π~-i|π~-i+1)j=1N2n(π~j|π~j-1)=2p(π~).

Graph

Proof

Let us use the example of strict plane partition in Fig. 4 to explain this formula. From Fig. 4, it is clear that

4.29 π~0=(5,2,1),π~-1=(4,1),π~-2=(3)π~-3=(1),π~-4=,π~1=(4,2),π~2=(3,1),π~3=(2),π~4=(1),π~5=,

Graph

and

4.30 2n(π~1|π~0)=1,2n(π~2|π~1)=2,2n(π~3|π~2)=1,2n(π~4|π~3)=1,2n(π~5|π~4)=0,2n(π~-1|π~0)=1,2n(π~-2|π~-1)=1,2n(π~-3|π~-2)=1,2n(π~-4|π~-3)=0.

Graph

From the above relations, it is showed that diagonal slices not being intersected receive a factor of 2, otherwise zero. Multiplying n(π~0)=3 as the power of 2 and p(π~)=11 in Fig. 6, we have

4.31 2n(π~0)i=142n(π~-i|π~-i+1)j=152n(π~j|π~j-1)=211=2p(π~).

Graph

It follows that this method extends to arbitrary strict plane partitions.

Setting a strict 2-partition (χ~)=(α~,β~) and inserting χ~|χ~χ~| to the above equation yields

4.32 SB(t,q)=χ~is a strict2-partition0|i=1Υ+(t-2i+12,q-2i+12)|χ~χ~|×k=1Υ-(t2k-12,q2k-12)|0=α~andβ~arestrict partitions0|i=1Υ+(t-2i+12,q-2i+12)|α~,β~α~,β~|×k=1Υ-(t2k-12,q2k-12)|0.

Graph

Equations (4.24)–(4.26) show that the generated weights are given by

4.33 i=1Mα~-i,β~-i|Υ+(t-2i+12,q-2i+12)|α~-i+1,β~-i+1×k=1Nα~k-1β~k-1|Υ-(t-2j+12,q-2j+12)|α~k,β~k.

Graph

Let (χ~j)=(α~j,β~j), α~-M1=α~N1=β~-M2=β~N2=, M=max{M1,M2}, N=max{N1,N2} and -MjN. Note that the plane partition π~ is made up of α~j and the plane partition π~ is made up of β~j. Combining Proposition 4.4, the Eq. (4.33) can be represented as

4.34 2n(α~0)i1=1M12n(α~-i1|α~-i1+1)k1=1N12n(α~k1|α~k1-1)×i1=1M1t(-2i1+12)(|α~-i1|-|α~-i1+1|)k1=1N1t(-2k1+12)(|α~k1-1|-|α~k1|)2n(β~0)i2=1M22n(β~-i2|β~-i2+1)k2=1N22n(β~k2|β~k2-1)×i2=1M2q(-2i2+12)(|β~-i2|-|β~-i2+1|)k2=1N2q(-2k2+12)(|β~k2-1|-|β~k2|)=2p(π~)+p(π~)j=-MNt|α~j|q|β~j|.

Graph

It shows that all strict 2-partitions (χ~j)=(α~j,β~j) satisfy

4.35 =(χ~-M)(χ~-2)(χ~-1)(χ~0)(χ~1)(χ~2)(χ~N)=,

Graph

which is equivalent to

4.36 =α~-M==α~-M1α~-2α~-1α~0α~1α~2α~N1==α~N=,=β~-M==β~-M1β~-2β~-1β~0β~1β~2β~N2==β~N=.

Graph

Then the Eq. (4.34) can be rewritten as

4.37 2p(π~)+p(π~)j=-MNt|α~j|q|β~j|=2p(π~)+p(π~)×i=-M1N1t|α~i|k=-M2N2q|β~k|.

Graph

It follows that

4.38 SB(t,q)=π~andπ~arestrict plane partitions2p(π~)+p(π~)t|π~|q|π~|.

Graph

In addition, by means of the Eq. (4.10), the generating function for BUC plane partitions can be represented as

4.39 SB(p,q)=n1=11+tn11-tn1m1=11+qm11-qm1×0|j=2Υ+(p-2j+12,q-2j+12)k=1Υ-(p2k-12,q2k-12)|0==n=11+tn1-tnnm=11+qm1-qmm.

Graph

Equation (4.39) can be regarded as the extension of the shifted MacMahon's formula [[26]].

Conclusions and discussions

In this paper, by means of constructing the generalized fermion vertex operators and interlacing (strict) 2-partitions, we have discussed generating functions for UC and BUC plane partitions which can be written as product forms. It should be pointed out that the fermion calculus approach play a vital role in establishing generating functions of plane partitions. How to use this method to look for the structure and properties of plane partitions in other integrable systems, such as symplectic universal character (SUC) hierarchy and the orthogonal universal character (OUC) should be an interesting question, which will be studied in the near future.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11965014 and 12061051), the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2023MS01003) and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT23096). The authors gratefully acknowledge the support of Professor Ke Wu and Professor Weizhong Zhao at Capital Normal University, China.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: This paper is devoted to connecting "Universal character" with plane partition. The study focus on the mathematical construction and computation. That is why there is no data.]

Code availability

My manuscript has no associated code/software. [Author's comment: Code/Software sharing not applicable to this article as no code/software was generated or analysed during the current study.]

References 1 E. Date, M. Kashiwara, M. Jimbo, T. Miwa, Transformation groups for soliton equations, in Nonlinear Integrable Systems-Classical Theory and Quantum Theory (World Scientific Publishing, Singapore, 1983), pp.39–119 2 Date E, Jimbo M, Kashiwara M, Miwa T. Operator approach to the Kadomtsev–Petviashvili equation-transformation groups for soliton equations III. J. Phys. Soc. Jpn. 1981; 50: 3806-3812. 1981JPSJ.50.3806D. 10.1143/JPSJ.50.3806 3 Kashiwara M, Miwa T. The function of the Kadomtsev–Petviashvili equation. Proc. Jpn. Acad. 1981; 57: 342-347 4 Jimbo M, Miwa T. Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 1983; 19: 943-1001. 723457. 10.2977/prims/1195182017 5 Jimbo M, Miwa T, Date E. Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. 2000: Cambridge; Cambridge University Press 6 Tsuda T. Universal characters and an extension of the KP hierarchy. Commun. Math. Phys. 2004; 248: 501-526. 2004CMaPh.248.501T. 2076919. 10.1007/s00220-004-1098-3 7 Ogawa Y. Generalized Q-functions and UC hierarchy of B-type. Tokyo J. Math. 2009; 32: 350-380. 2589949. 10.3836/tjm/1264170236 8 Wang YN, Yan ZW. Solutions of the universal character hierarchy and BUC hierarchy by fermionic approach. J. Math. Anal. Appl. 2024; 532. 4668347. 10.1016/j.jmaa.2023.127912 9 Foda O, Wheeler M, Zuparic M. On free fermions and plane partitions. J. Algebra. 2009; 321: 3249-3273. 2510048. 10.1016/j.jalgebra.2008.08.021 Ünal M. Fermionic approach to soliton equations. J. Math. Anal. Appl. 2011; 380: 782-793. 2794432. 10.1016/j.jmaa.2011.03.012 Ünal M. Solution of soliton equations in terms of neutral fermion particles. J. Math. Anal. Appl. 2012; 386: 605-612. 2834770. 10.1016/j.jmaa.2011.08.021 Okounkov A, Reshetikhin N, Vafa C. Quantum Calabi–Yau and classical crystals. Prog. Math. 2006; 244: 597. 2181817. 10.1007/0-8176-4467-9_16 Nakatsu T, Takasaki K. Integrable structure of melting crystal model with external potentials. Adv. Stud. Pure Math. 2010; 59: 201. 2683210. 10.2969/aspm/05910201 Bergeron F, Labelle G, Leroux P. Combinatorial Species and Tree-Like Structures. 1998: Cambridge; Cambridge University Press R.P. Stanley, Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999) R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982) N.M. Ercolani, S. Jansen, D. Ueltschi, Random partitions in statistical mechanics. Electron. J. Probab. 19, 1–37 (2014) Okounkov A. Random matrices and random permutations. Int. Math. Res. Not. 2000; 2000: 1043-1095. 1802530. 10.1155/S1073792800000532 Okounkov A, Reshetikhin N. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 2003; 16: 581-603. 1969205. 10.1090/S0894-0347-03-00425-9 Okounkov A, Reshetikhin N, Vafa C. Quantum Calabi–Yau and classical crystals. Prog. Math. 2006; 244: 597. 2181817. 10.1007/0-8176-4467-9_16 Wang N, Wu K. 3D bosons, 3-Jack polynomials and affine Yangian of. J. High Energy Phys. 2023; 03: 232. 2023JHEP.03.232W. 4569746. 10.1007/JHEP03(2023)232 Wang N, Wu K. 3D bosons and algebra. J. High Energy Phys. 2023; 05: 174. 2023JHEP.05.174W Foda O, Wheeler M. BKP plane partitions. J. High Energy Phys. 2007; 01: 075. 2007JHEP.01.075F. 2285934. 10.1088/1126-6708/2007/01/075 Jimbo M, Miwa T. Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 1983; 19: 943-1001. 723457. 10.2977/prims/1195182017 Huang F, Wang N. Generalized symplectic Schur functions and SUC hierarchy. J. Math. Phys. 2020; 61. 2020JMP.61f1508H. 4108829. 10.1063/1.5120855 Vuletić M. A generalization of MacMahon's formula. Trans. Am. Math. Soc. 2009; 361: 2789-2804. 2471939. 10.1090/S0002-9947-08-04753-3

By Shengyu Zhang and Zhaowen Yan

Reported by Author; Author

Titel:
UC and BUC plane partitions
Autor/in / Beteiligte Person: Zhang, Shengyu ; Yan, Zhaowen
Link:
Zeitschrift: European Physical Journal C: Particles and Fields, Jg. 84 (2024), Heft 4, S. 1-17
Veröffentlichung: SpringerOpen, 2024
Medientyp: academicJournal
ISSN: 1434-6052 (print)
DOI: 10.1140/epjc/s10052-024-12701-0
Schlagwort:
  • 17B80
  • 35Q55
  • 37K10
  • Astrophysics
  • QB460-466
  • Nuclear and particle physics. Atomic energy. Radioactivity
  • QC770-798
Sonstiges:
  • Nachgewiesen in: Directory of Open Access Journals
  • Sprachen: English
  • Collection: LCC:Astrophysics ; LCC:Nuclear and particle physics. Atomic energy. Radioactivity
  • Document Type: article
  • File Description: electronic resource
  • Language: English

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -