Zum Hauptinhalt springen

Yang-Baxter deformations of the $$GL(2,{\mathbb {R}})$$ G L ( 2 , R ) WZW model and non-Abelian T-duality

Eghbali, Ali ; Parvizi, Tayebe ; et al.
In: European Physical Journal C: Particles and Fields, Jg. 83 (2023), Heft 10, S. 1-12
Online academicJournal

Yang-Baxter deformations of the GL(<reflink idref="bib2" id="ref1">2</reflink>,R) WZW model and non-Abelian T-duality  Introduction

By calculating inequivalent classical r-matrices for the g l (2 , R) Lie algebra as solutions of (modified) classical Yang-Baxter equation ((m)CYBE), we classify the YB deformations of Wess-Zumino-Witten (WZW) model on the G L (2 , R) Lie group in twelve inequivalent families. Most importantly, it is shown that each of these models can be obtained from a Poisson-Lie T-dual σ -model in the presence of the spectator fields when the dual Lie group is considered to be Abelian, i.e. all deformed models have Poisson-Lie symmetry just as undeformed WZW model on the G L (2 , R) . In this way, all deformed models are specified via spectator-dependent background matrices. For one case, the dual background is clearly found.

The deformation of integrable two-dimensional σ -models has attracted considerable attention in two decades ago, in particular given their applications in string theory and AdS/CFT [[1]–[3]] (for a comprehensive review, see [[4]]). Integrable deformations of SU(2) principal chiral model were firstly presented in [[5]–[7]]. The generalization of [[6]] as YB (or η ) deformation of chiral model was introduced by Klimcik in [[1]–[3]]. The YB deformations are based on R -operators satisfying the (m)CYBE or CYBE (homogeneous YB deformations) [[8]]. The application of these integrable deformations to AdS5×S5 superstring action has been presented in [[9]–[11]]. Note that the initial input for construction of a YB deformed background is classical r-matrix. The r-matrices may be divided into Abelian and non-Abelian. It has been proved that the YB deformed chiral models related to Abelian r-matrices correspond to T-duality shift T-duality transformations [[12]]. In the case of non-Abelian r-matrices it has been shown that the YB deformed chiral model corresponds to deformed T-dual models (with invertible two cocycle ω such that ω-1=R ) [[13]]. Some of the YB deformations of the WZW models with compact or noncompact Lie groups have been also performed in [[14]–[19]]. Generalization of this type of the deformations to Lie supergroups has been recently explored in [[20]].

The main purpose of this paper is to construct the YB deformations of WZW model based on the GL(2,R) Lie group. We first classify the inequivalent classical r-matrices as solution of (m)CYBE by using the automorphism transformation associated to the gl(2,R) Lie algebra. Then we obtain the YB deformed backgrounds of the GL(2,R) WZW model. As previously shown in [[21]], the WZW model on the GL(2,R) has Poisson-Lie symmetry with spectators. Here we will show that all YB deformed backgrounds have Poisson-Lie symmetry, in such a way that the resulting deformed backgrounds can be represented as original models of Poisson-Lie T-dual σ -models in the presence of the spectator fields when the dual Lie group is considered to be Abelian; in fact all deformed models will have Poisson-Lie symmetry just as undeformed WZW model on the GL(2,R) [[21]].

The paper is organized as follows. In Sect. 2, we start by recalling the YB deformation of WZW model. In Sect. 3, we first review the construction of WZW model on the GL(2,R) Lie group [[21]], then we solve the (m)CYBE in order to obtain the inequivalent classical r-matrices for the gl(2,R) Lie algebra. The backgrounds of YB deformed WZW models on the GL(2,R) Lie group are also constructed in this section; the results are summarized in Table 1. The conformal invariance conditions of the YB deformed backgrounds up to the one-loop order are discussed at the end of Sect. 3. In Sect. 4, we show that the YB deformed models can be considered as original ones of non-Abelian T-dual σ -models. For all deformed backgrounds, the spectator-dependent background matrices are represented in Table 2. At the end of Sect. 4, we also obtain the non-Abelian target space dual for one case of the deformed models. Some concluding remarks are given in the last section.

A review of the YB deformations of WZW model

The YB deformation of WZW model on a Lie group G is giving by [[14]]

2.1 SWZWYB(g)=12Σdσ+dσ-ΩabJ+aL-b+κ12Bd3σεγαβΩadfbcdLγaLαbLβc,

Graph

where Σ is worldsheet with the coordinates (τ,σ) [1]. In the second integral, B is a three-manifold bounded by the worldsheet with the coordinates α=(ξ,τ,σ) , and κ is a constant parameter. Here Ωab is a non-degenerate ad-invariant symmetric bilinear form on Lie algebra G of G where is defined by Ωab=<Ta,Tb> ; moreover, fabc stand for the structure constants of G , and L± are the components of the left-invariant one-forms which are defined in the following way

2.2 g-1±g=L±=L±aTa,

Graph

in which g:ΣG is the element of Lie group G and Ta ( a=1,..,dimG) are the bases of Lie algebra G . Here the linear operator R:GG is a solution of (m)CYBE [[8]]

2.3 [R(X),R(Y)]-R([R(X),Y]+[X,R(Y)])=ω[X,Y],X,YG,

Graph

where ω is a constant parameter. When ω=0 , Eq. (2.3) is called the CYBE while for ω=±1 this equation can be generalized to the mCYBE. The deformed currents J± are defined by means of the following relation [[14]]

2.4 J±=(1+ωη2)1±A~R1-η2R2L±,

Graph

where η and A~ are some real parameters measuring the deformation of WZW model. If we set η=A~=0 and κ=0 one then recovers the action of the principal chiral model. Also for η=A~=0 and κ=1 the action reduces to the same standard WZW model [[14]]. Notice that the parameter ω can be sometimes normalized by rescaling R , accordingly, one can consider ω=0,±1 . Indeed, the model (2.1) is integrable as shown in [[14]]. In the following we shall consider the model (2.1) for the GL(2,R) Lie group.

YB deformations of WZW model on the GL(2,R) Lie group

Similar to the calculations performed to obtain the classical r-matrices of the h4 Lie algebra [[19]], here we use the automorphism transformation of the gl(2,R) Lie algebra to classify all corresponding inequivalent classical r-matrices as solutions of (m)CYBE. In order to obtain the YB deformations of the GL(2,R) WZW model, one needs to calculate all linear R -operators corresponding to the obtained classical r-matrices. Then, by calculating the deformed currents J± we will obtain all YB deformations of the GL(2,R) WZW model. Before proceeding to obtain these, let us first consider the undeformed WZW model on the GL(2,R) .

The WZW model based on the GL(2,R) Lie group

We start by writing down the WZW model on the GL(2,R) group. The Lie algebra gl(2,R)=sl(2,R)u(1) is generated by the set (T1,T2,T3,T4) with the following commutation rules:

3.1 [T1,T2]=2T2,[T1,T3]=-2T3,[T2,T3]=T1,[T4,.]=0,

Graph

where T4 is a central generator. As mentioned in the above, one can obtain the (undeformed) standard WZW model from (2.1) by considering κ=1 and setting η=A~=0 in formula (2.4). To make WZW model one needs a bilinear form Ωab so that it satisfies the following condition [[22]]:

3.2 fabdΩdc+facdΩdb=0.

Graph

A bilinear form on the gl(2,R) Lie algebra defined by commutation relations (3.1) can be obtained by (3.2), giving [[21]]

3.3 Ωab=2λ00000λ00λ00000ρ,

Graph

where λ , ρ are some real constants.

In order to calculate the left-invariant one-forms we parameterize the GL(2,R) group manifold with the coordinates xμ=(x,y,u,v) , therefore the elements of the GL(2,R) can be written as

3.4 g=eyT2exT1euT3evT4,

Graph

then, using (3.1), (3.4) together with (2.2) one can obtain the components of left-invariant one-forms, giving us [[21]]

3.5 L±1=ue-2x±y+±x,L±2=e-2x±y,L±3=-u2e-2x±y-2u±x+±u,L±4=±v.

Graph

Thus, using these, the WZW model on the Gl(2,R) is worked out [[21]]:

3.6 SWZW(g)=12dσ+dσ-[ρ+v-v+2λ(+x-x+e-2x+u-y)].

Graph

By comparing the above action with the original σ -model of the form

3.7 S=12Σdσ+dσ-(Gμν+Bμν)+xμ-xν,

Graph

one concludes that the background metric Gμν and the antisymmetric B-field have the following forms:

3.8 ds2=ρdv2+2dx2+2e-2xdydu,

Graph

3.9 B=e-2xdudy.

Graph

Here we have assumed that λ=1 . In the following, we will also use this assumption.

Classical r-matrices for the gl(2,R) Lie algebra

Classical r-matrices for gl(2,R) Lie algebra were, firstly, found in [[23]]. There, the Lie bialgebras structures and corresponding classical r-matrices were classified in two multiparametric inequivalent classes. In this work, by using automorphism group of the gl(2,R) Lie algebra and we will classify all inequivalent classical r-matrices as the solutions of (m)CYBE. We show that that classical r-matrices are split into twelve inequivalent classes.

Given Lie algebra G with the basis {Ta} we define an element rGG in the following form

3.10 r=rabTaTb,

Graph

where rab is an antisymmetric matrix with real entries. The linear operator R associated to a classical r-matrix has an important role in the deformation process of the WZW model. Accordingly, one may define [[19]]

3.11 R(Tc)=<r,1Tc>=rabΩbcTa.

Graph

Considering the relation

3.12 R(Ta)=RabTb,

Graph

and then comparing (3.11) and (3.12) one obtains that

3.13 Rab=rbcΩca.

Graph

Using (3.12) and (3.13) together with (3.2), one can rewrite the (m)CYBE (2.3) in the following form [[19]]

3.14 fdecrdareb+fdeardbrec+fdebrdcrea-ωfdecΩdaΩeb=0.

Graph

For simplicity, one may use the representations (Xa)bc=-fabc and (Yc)ab=-fabc to obtain a matrix form of the above formula, giving [[19]]

3.15 rYbr+r(Xarab)-(rbaXat)r=-ω(Ω-1YbΩ-1).

Graph

Here, the superscript "t" means transposition of the matrix. In order to calculate the r-matrices for a given Lie algebra G we need to solve equation (3.15). But to determine inequivalent r-matrices we should use the automorphism group of Lie algebra G . The automorphism transformation A on the basis {Ta} of G is given by Ta=A(Ta)=AabTb , where {Ta} are the changed basis by the automorphism A obeying the same commutation relations as {Ta} . As proved in [[19]] for a Lie algebra G with transformation AAut(G) , two r-matrices r and r as solutions of the (m)CYBE are said to be equivalent if the following transformation holds[2] [[19]]

3.16 r=AtrA.

Graph

This equation helps us to classify the inequivalent r-matrices for the gl(2,R) . Before proceeding to do this let us find the general automorphism of the gl(2,R) which preserves the commutation rules (3.1). The automorphism transformation of gl(2,R) which preserves the commutation rules (3.1) is given by [[26]],rezaei2010complex

3.17 T1=1-acbcT1-1cab+2bcT2+aT3,T2=a2c+a24c2bcT1-a2b4c2-1c-ac2bcT2+a24cT3,T3=-bcT1+bT2-cT3,T4=dT4,

Graph

where a, b, c, d are arbitrary real numbers.

For solving the (m)CYBE (3.15) for gl(2,R) Lie algebra we consider rab as following form:

3.18 rab=0m1m2m3-m10m4m5-m2-m40m6-m3-m5-m60,

Graph

where m1,...,m6 are real constants. Now puttig (3.18) into relation (3.15) and then using (3.1) and (3.3), the general form solution of (3.15) split into six r-matrices. The solutions contain the constants ω and m1,...,m6 and are given as follows:

r1=0m424m2m2-m4m62m2-m424m20m4-m42m64m22-m2-m40m6m4m62m2m42m64m22-m60,r2=0m10m3-m10Δ22m1m3Δ20-Δ200-m3-2m1m3Δ200,r3=0m1m20-m10Δ30-m2-Δ3000000,

Graph

3.19 r4=0-m5Δ1m6Δ1m3m5Δ1m60-2m3Δ1m6m5-Δ12m3Δ1m60m6-m3-m5-m60,r5=000m3000m5000m6-m3-m5-m60,r6=0m100-m100m500000-m500,

Graph

where Δ1=12-ωm62m5m6+m32 , Δ2=-ω and Δ3=-ω+4m1m2 .

In the following, using the automorphisms transformation (3.17) and also (3.16), we determine representations of all inequivalent r-matrices of (3.19). Indeed, they are split into twelve inequivalent classes as follows:

Theorem 3.1

Any r-matrix of the gl(2,R) Lie algebra as a solution of the (m)CYBE belongs just to one of the following twelve inequivalent classes[3]

ri=T1T3+T3T4,rii=T1T3,riii=T1T4,riv=T1T2+T2T4,rv=T2T4,rvi=T1T2,rvii=T3T4,rviii=-ωT2T3,rix=-T1T2+T1T3+T2T4+T3T4,rx=ω(-T1T2+T1T3)+T2T4-T3T4,rxi=T1T2+T1T3-T2T4+T3T4,rxii=-ω(T1T2+T1T3)-T2T4-T3T4.

Graph

Now using Eqs. (3.3), (3.12) and (3.13) one can find all linear R -operators related to the inequivalent r-matrices and then calculate the deformed currents J± and also the YB deformed WZW models.

Backgrounds for YB deformations of the GL(2,R) WZW model

In this subsection we find all linear R -operators corresponding to the inequivalent r-matrices of Theorem 3.1. Then we obtain the deformed currents J± from Eq. (2.4). After, using (2.1) we obtain all YB deformed backgrounds of the GL(2,R) WZW model. It is reminded that the symbol of each background, e.g. GL(2,R)i(η,A~,κ) , indicates the YB deformed background derived by r-matrix ri ; roman numbers i, ii etc. distinguish between several possible deformed backgrounds of the WZW model, and the parameters (η,A~,κ) indicate the deformation ones of each background. Notice that all deformed backgrounds include three parameters (ω,A~,η) except for GL(2,R)ii(η,κ) . The deformed backgrounds including metric and B-field are summarized in Table 1.

Table 1 The YB deformed backgrounds of the GL(2,R) WZW model

Background symbol

Backgrounds including metric and B-field

Comments

ds2=2dx2-η2(2+ρ)e-4xdy2+2e-2xdydu+ρdv2

GL(2,R)i(η,A~,κ)

B=κe-2xdudy+A~ρe-2xdvdy

ω=0

ds2=2dx2-2η2e-4xdy2+2e-2xdydu+ρdv2

GL(2,R)ii(η,κ)

B=κe-2xdudy

ω=0

ds2=11+2ρη2[2dx2+ρdv2-4ρη2u2e-4xdy2-8ρη2ue-2xdxdy]+2e-2xdydu

GL(2,R)iii(η,A~,κ)

B=κe-2xdudy+2ρA~1+2ρη2ue-2xdvdy

ω=0

ds2=ρdv2+2(1-2η2(2+ρ)u2)dx2+2e-2x(1+η2u2(2+ρ))dydu

GL(2,R)iv(η,A~,κ)

-η2(ρ+2)[du2+u4e-4xdy2+4u3e-2xdxdy-4udxdu]

B=e-2x(κ+2A~u)dudy+A~[2u2e-2xdydx+ρu2e-2xdydv+2ρudxdv]

ω=0

ds2=ρdv2+2(1-2η2ρu2)dx2-ρη2[du2+u4e-4xdy2+4u3e-2xdxdy-4udxdu]

GL(2,R)v(η,A~,κ)

+2e-2x(1+ρη2u2)dydu

ω=0

B=κe-2xdudy+ρA~[u2e-2xdydv+2udxdv]

ds2=ρdv2+2(1-4η2u2)dx2-2η2[du2+u4e-4xdy2-4udxdu+4u3e-2xdxdy]

GL(2,R)vi(η,A~,κ)

+2e-2x(1+2η2u2)dydu

ω=0

B=e-2x(κ+2A~u)dudy+2A~u2e-2xdydx

ds2=2dx2-η2ρe-4xdy2+2e-2xdydu+ρdv2

GL(2,R)vii(η,A~,κ)

B=κe-2xdudy+A~ρe-2xdvdy

ω=0

ds2=ρ(1+ωη2)dv2+2(1+ωη2)dx2+2ωη2u2e-4xdy2+2e-2xdydu+4ωη2ue-2xdxdy

GL(2,R)viii(η,A~,κ)

B=e-2x(κ-A~-ω)dudy+2A~-ωue-2xdxdy

ω<0

ds2=1-η21-4η2{2(1-2η2(2+ρ)1+2ρη2u2)dx2+2e-2x1+2ρη2[η2u2(2+ρ)+1-η2(2-ρ)]dydu}

-(1-η2)η2(2+ρ)(1-4η2)(1+2ρη2)[e-4x(1-u2)2dy2+4ue-2x(u2-1)dxdy-4udxdu+du2]+ρ(1-η2)1+2ρη2dv2

GL(2,R)ix(η,A~,κ)

ω=-1

B=(κ-2A~(1-η2)1-4η2)ue-2xdudy-2A~(1-η2)1-4η2u2e-2xdydx

+A~(1-η2)ρ1+2ρη2[2udxdv+e-2x(-u2+1)dvdy]

ds2=1+ωη21-η2(4ω+2ρ){2(1-2ρη2-2η2u2(2ω+ρ))dx2+e-4x[2η2(2ω-ρ)u2

-η2(2ω+ρ)(1+u4)]dy2+4ue-2x[η2(2ω-ρ)-η2(2ω+ρ)u2]dxdy

+2e-2x[1-η2(2ω+ρ)+η2u2(2ω+ρ)]dydu+8η2ωρue-2xdydv+8η2ωρdxdv

GL(2,R)x(η,A~,κ)

+ρ(1-4ωη2)dv2-η2(2ω+ρ)du2+4η2u(2ω+ρ)dxdu}

ω>0

B=[κ-2ωA~(1+ωη2)1-η2(4ω+2ρ)u]e-2xdudy-2ωA~(1+ωη2)1-η2(4ω+2ρ)u2e-2xdydx

+ρA~(1+ωη2)1-η2(4ω+2ρ)[e-2x(1+u2)dydv+2udxdv]

ds2=1+η21+4η2{2(1-2η2(2+ρ)1-2ρη2u2)dx2+2e-2x1-2ρη2[-η2u2(2+ρ)+(1+η2(2+ρ))]dydu}

-(1+η2)η2(2+ρ)(1+4η2)(1-2ρη2)[e-4x(1+u2)2dy2+4ue-2x(u2+1)dxdy-4udxdu+du2]+ρ(1+η2)1-2ρη2dv2

GL(2,R)xi(η,A~,κ)

ω=1

B=[κ+2A~(1+η2)1+4η2u]e-2xdudy+2A~(1+η2)1+4η2u2e-2xdydx

+A~(1+η2)ρ1-2ρη2[-2udxdv+e-2x(u2+1)dvdy]

ds2=1+ωη21+η2(-4ω+2ρ){2(1+2ρη2+2η2u2(2ω-ρ))dx2+e-4x[2η2(2ω+ρ)u2+η2(2ω-ρ)

×(1+u4)]dy2+4ue-2x[η2(2ω+ρ)+η2(2ω-ρ)u2]dxdy

+2e-2x[1-η2(2ω-ρ)-η2u2(2ω-ρ)]dydu-8η2-ωρue-2xdydv-8η2-ωρdxdv

GL(2,R)xii(η,A~,κ)

+ρ(1-4ωη2)dv2+η2(2ω-ρ)du2-4η2u(2ω-ρ)dxdu}

ω<0

B=[κ+2A~-ω(1+ωη2)1-η2(4ω-2ρ)u]e-2xdudy+A~(1+ωη2)1-η2(4ω-2ρ)[2ρudvdx+ρe-2x(u2-1)dvdy

+2-ωe-2xu2dydx]

Here contrary of H4 case [[19]], none of the backgrounds of YB deformed GL(2,R) WZW models can be related to the GL(2,R) WZW model (Eqs. 3.8 and 3.9), because the Killing symmetries of the deformed metrics are different from those of equation (3.8). Before closing this section, let us discuss the conformal invariance conditions of the deformed models. In Ref. [[27]] it has been identified that a necessary and sufficient condition for the η -model to have a standard supergravity background as target space is that an algebraic condition on the r-matrix. There, it has been referred to as the unimodularity condition that is

3.20 rab[Ta,Tb]=0.

Graph

In the procedure of YB deformation, the initial input for construction of the deformed backgrounds is the r-matrix. When a r-matrix satisfies the unimodularity condition (3.20), the YB deformed background is a solution to standard supergravity. If not, the background becomes a solution to the generalized supergravity equations. Let us now look at the unimodularity condition on the solutions of (m)CYBE for the gl(2,R) . Using the condition (3.20) together with (3.1) we find that only the r-matrices riii,rv and rvii of Theorem 3.1 are unimodular, while the rest denote non-unimodular r-matrices. So, we expect that the deformed backgrounds by the aforementioned unimodular r-matrices can be satisfied the standard supergravity equations (the one-loop beta function equations [[28]]). By looking at the conformal invariance conditions, we find that the backgrounds generated by the r-matrices riii,rv and rvii satisfy the one-loop beta function equations if the deformation parameters η,A~ vanish and κ=1 . The same condition happens for the rest of backgrounds generated by non-unimodular matrices.

YB deformed models as original ones of non-Abelian T-dual σ-models

In this section we shall show that all YB deformed WZW models of Table 1 can be obtained from a Poisson-Lie T-dual σ -model constructed on a 2+2 -dimensional manifold M with the two-dimensional non-Abelian Lie group acting freely on M . As we will see, the dual Lie group is considered to be Abelian. Before we proceed to investigate this case further, let us briefly review the construction of Poisson-Lie T-dual σ -models in the presence of spectator fields [[29]–[31]]. Since the Poisson-Lie duality is based on the concepts of the Drinfeld double, it is necessary to define the Drinfeld double group D. A Drinfeld double [[32]] is simply a Lie group D whose Lie algebra D admits a decomposition D=GG~ into a pair of sub-algebras maximally isotropic with respect to a symmetric ad-invariant non-degenerate bilinear form <.,.> . The dimension of sub-algebras have to be equal. We furthermore consider G and G~ as a pair of maximally isotropic subgroups corresponding to the subalgebras G and G~ , and choose a basis in each of the sub-algebras as TaG and T~aG~,a=1,...,dimG , such that

4.1 <Ta,Tb>=<T~a,T~b>=0,<Ta,T~b>=δab.

Graph

The basis of the two sub-algebras satisfy the commutation relations

4.2 [Ta,Tb]=fcabTc,[T~a,T~b]=f~abcT~c,[Ta,T~b]=f~bcaTc+fbcaT~c,

Graph

where fcab and f~cab are structure constants of G and G~ , respectively. Noted that the Lie algebra structure defined by relation (4.2) is called Drinfeld double D .

Consider now a non-linear σ -model for the d field variables XM=(xμ,yα) , where xμ 's, μ=1,...,dimG represent the coordinates of Lie group G acting freely on the manifold MO×G , and yα,α=1,...,d-dimG are the coordinates of the orbit O of G in M . A remarkable point is that the coordinates yα do not participate in the Poisson-Lie T-duality transformations and are therefore called spectator fields [[31]]. The corresponding σ -model action has the form

4.3 S=12dσ+dσ-[Eab(g,yα)R+aR-b+ϕaβ(1)(g,yα)R+a-yβ+ϕαb(2)(g,yα)+yαR-b+ϕαβ(g,yα)+yα-yβ].

Graph

where R±a are the components of the right-invariant Maurer-Cartan one-forms which are constructed by means of an element g of the Lie group G as

4.4 R±=(±gg-1)aTa=R±aTa=±xμRμaTa.

Graph

As shown, the couplings Eab,ϕaα(1),ϕαb(2) and ϕαβ may depend on all variables xμ and yα .

Table 2 Spectator-dependent background matrices

Background symbol

E0

F(1)

F(2)

F

Comments

GL(2,R)i(η,A~,κ)

200-η2(2+ρ)

001-κ-A~ρ

01+κ0A~ρ

000ρ

GL(2,R)ii(η,κ)

200-2η2

001-κ0

01+κ00

000ρ

GL(2,R)iii(η,A~,κ)

21+2ρη24ρη2u1+2ρη24ρη2u1+2ρη2-4ρη2u21+2ρη2

001-κ-2ρA~u1+2ρη2

01+κ02ρA~u1+2ρη2

000ρ1+2ρη2

P=η2(ρ+2)

GL(2,R)iv(η,A~,κ)

2(1-2u2P)P+P-u4P

-2uP-2A~ρuP1-P2ρu2A~

-2uPP1+P22A~ρu-ρu2A~

-P00ρ

P±=2u2(uP±A~)

P1=1+2u2P

P2=κ+2A~u

GL(2,R)v(η,A~,κ)

2Σ-2u3ρη22u3η2ρ-η2ρu4

-2η2ρu-2A~ρuΣ+-κρu2A~

-2η2ρuΣ++κ2A~ρu-ρu2A~

-η2ρ00ρ

Σ+=1+ρη2u2

Σ-=1-2ρη2u2

Λ±=2η2u±A~

GL(2,R)vi(η,A~,κ)

2P42u2Λ+2u2Λ--2η2u4

-4η2u0P3-P20

-4η2uP3+P200

-2η200ρ

P3=1+2η2u2

P4=1-4η2u2

GL(2,R)vii(η,A~,κ)

200-η2ρ

001-κ-A~ρ

01+κ0A~ρ

000ρ

GL(2,R)viii(η,A~,κ)

2(1+ωη2)Σ1-Σ2Σ1+Σ2uΣ1

001-Σ30

0Σ3+100

000ρ(1+ωη2)

Σ1=-2ωη2u

Σ2=2A~-ωu

Σ3=κ-A~-ω

Λ1-=(1-η2)(1-4η2)

γ1-=η2(2+ρ)1+2ρη2

Γ2-=2u2A~Λ1-

Γ3-=ρA~(1-η2)1+2ρη2

GL(2,R)ix(η,A~,κ)

2(1-2u2γ1-)Λ1-Γ1--Γ2-Γ1-+Γ2-δ-2δ1-

2uδ1--2uΓ3-γ2--Γ--δ-Γ3-

2uδ1-Γ-+γ2-2uΓ3-δ-Γ3-

δ1-00Γ3-A~

Γ-=κ-2uA~Λ1-

δ-=1-u2

Γ1-=-2uδ-γ1-Λ1-

δ1-=-γ1-Λ1-

γ2-=-δ1-[u2+

1-η2(2-ρ)η2(2+ρ)]

λ±=2ω±ρ

Table 2 Spectator-dependent background matrices

Background symbol

E0

F(1)

F(2)

F

Comments

Λ2+=1+ωη21-2η2λ+

γ3+=2uη2[λ--λ+u2]

γ4+=2A~ωu2

γ5+=2λ-u2-λ+(1+u4)

γ6+=Λ2+[1+η2λ+

×(-1+u2)]

γ7+=1-2ρη2-2η2u2λ+

GL(2,R)x(η,A~,κ)

2γ7+Λ2+-Λ2+γ+Λ2+γ-Λ2+η2γ5+

-Λ2+Γ8+-Λ2+Γ+γ6+-Γ4+Λ2+λ+

-Λ2+Γ8+Γ4++γ6+Λ2+Γ-Λ2+λ-

Γ10+00Γ9+

γ±=γ4+±γ3+

Γ4+=κ-2uA~ωΛ2+

Γ5+=4η2ωρ

Γ6+=2uρA~

Γ7+=ρA~(1+u2)

Γ8+=2η2uλ+

Γ9+=ρΛ2+(1-4ωη2)

Γ10+=-η2Λ2+λ+

Γ±=Γ6+±Γ5+

λ±=uΓ5+±Γ7+

Λ1+=-1+η21+4η2

δ+=1+u2

γ+=η2(ρ+2)1-2ρη2

Γ3+=ρA~(1+η2)1-2ρη2

GL(2,R)xi(η,A~,κ)

-2(1-2u2γ+)Λ1+Γ1++Γ2+Γ1+-Γ2+δ1+δ+2

2uδ1+2uΓ3+γ2+-Γ+-δ+Γ3+

2uδ1+Γ++γ2+-2uΓ3+δ+Γ3+

δ1+00γ1+

δ1+=γ+Λ1+

Γ1+=-2uδ+δ1+

Γ2+=-2u2A~Λ1+

γ1+=ρ(1+η2)1-2ρη2

γ2+=-δ1+[1-u2

+1η2(2+ρ)]

Γ+=κ-2uA~Λ1+

Λ2-=1+ωη21-2η2λ-

γ3-=2uη2[λ++u2λ-]

Table 2 Spectator-dependent background matrices

Background symbol

E0

F(1)

F(2)

F

Comments

γ4-=2A~u2-ω

γ5-=η2Λ2-[2u2λ+

+(1+u4)λ-]

γ6-=1+2η2(ρ+u2λ-)

γ±=γ4-±γ3-

GL(2,R)xii(η,A~,κ)

2γ6-Λ2-Λ2-γ-Lambda2-γ+γ5-

2uΛ2-Γ-Λ2-λ-Γ10--Γ4-Λ2-Λ-

2uΛ2-Γ-Γ10-+Γ4--Λ2-λ+Λ2-Λ+

Λ2-Γ-00Λ2-Γ9-

Γ4-=κ+2u-ωA~Λ2-

Γ5-=-2η2-ω

Γ7-=2uρΓ5-

Γ8-=ρA~(u2-1)

Γ9-=ρ(1-4ωη2)Λ2-

Γ10-=(1-η2λ-δ+)Λ2-

Λ±=Γ7-±Γ8-

Γ±=η2λ±

λ±=Γ6+±2Γ5-

Similarly we introduce another σ -model for the d field variables X~M=(x~μ,yα) , where x~μ 's parameterize an element g~G~ , whose dimension is, however, equal to that of G, and the rest of the variables are the same yα 's used in (4.3). We consider the components of the right-invariant Maurer-Cartan forms on G~ as (pmg~g~-1)a=R~±a=±x~μR~μa . In this case, the corresponding action takes the following form

4.5 S~=12dσ+dσ-×[E~ab(g~,yα)R~+aR~-b+ϕ~β(1)a(g~,yα)R~+a-yβ+ϕ~α(2)b(g~,yα)+yαR~-b+ϕ~αβ(g~,yα)+yα-yβ].

Graph

The σ -models (4.3) and (4.5) will be dual to each other in the sense of Poisson-Lie T-duality [[29]] if the associated Lie algebras G and G~ form a the Lie algebra D . There remains to relate the couplings Eab,ϕaβ(1),ϕαb(2) and ϕαβ in (4.3) to E~ab,ϕ~β(1)a,ϕ~α(2)b and ϕ~αβ in (4.5). It has been shown that [[29]–[31]] the various couplings in the σ -model action (4.3) are restricted to be

4.6 E=(E0-1+Π)-1,ϕ(1)=EE0-1F(1),ϕ(2)=F(2)E0-1E,ϕ=F-F(2)ΠEE0-1F(1),

Graph

where the new couplings E0,F(1),F(2) and F may be at most functions of the variables yα only. In equation (4.6), Π(g) defined by Πab(g)=bac(g)(a-1)cb(g) is the Poisson structure on G so that matrices a(g) and b(g) are defined as follows:

4.7 g-1Tag=aab(g)Tb,g-1T~ag=bab(g)Tb+(a-1)ba(g)T~b.

Graph

Eventually, the relationship between the couplings of the dual action and the original one is given by [[29]–[31]]

4.8 E~=(E0+Π~)-1,ϕ~(1)=E~F(1),ϕ~(2)=-F(2)E~,ϕ~=F-F(2)E~F(1).

Graph

Analogously, one can define matrices a~(g~),b~(g~) and Π~(g~) by just replacing the untilded symbols by tilded ones. As we will see, the Poisson-Lie T-duality approach in the presence of spectators helps us to construct the non-Abelian T-dual spaces of the YB deformations of the Gl(2,R) WZW models of Table 1. It's worth mentioning that in Ref. [[21]], the Gl(2,R) WZW model has been derived from a dual pair of σ -models related by Poisson-Lie symmetry, in such a way that the WZW model as original model has been constructed on a 2+2 -dimensional manifold MO×G , where G=A2 as a two-dimensional real non-Abelian Lie group acts freely on M . Below as an example, the non-Abelian T-dualization of the YB deformed background GL(2,R)i(η,A~,κ) is discussed in detail by using the formulation mentioned above.

Non-Abelian T-dual space of the YB deformed background GL(2,R)i(η,A~,κ)

The original model

The original model is constructed on 2+2 -dimensional manifold MO×G in which G is considered to be the Lie group A2 whose Lie algebra is denoted by A2 , while O is the orbit of G in M . We use the coordinates {x,y} for the A2 , and employ yα={u,v} for the orbit O. In what follows we shall show the background of original model is equivalent to the YB deformed background GL(2,R)i(η,A~,κ) . As mentioned earlier, having Drinfeld doubles one can construct the Poisson-Lie T-dual σ -models on them. The Lie algebra of the semi-Abelian double (A2,2A1) is defined by the following non-zero Lie brackets

4.9 [T1,T2]=2T2,[T1,T~2]=-2T~2,[T2,T~2]=2T~1.

Graph

where {T1,T2} and {T~1,T~2} are the basis of A2 and 2A1 , respectively. In order to calculate the components of right invariant one-forms R±a on the A2 we parameterize an element of A2 as

4.10 g=e-xT1eyT2.

Graph

Then, R±a 's are derived to be of the form

4.11 R±1=-±x,R±2=e-2x±y.

Graph

To achieve a σ -model with the background GL(2,R)i(η,A~,κ) one has to choose the spectator-dependent matrices in the following form

4.12 E0ab=200-η2(ρ+2),Faβ(1)=00(1-κ)-A~ρ,Fαb(2)=0(1+κ)0A~ρ,Fαβ=000ρ.

Graph

Since the dual Lie group, 2A1 , has assumed to be Abelian, it follows from the second relation of (4.7) that bab(g)=0 ; consequently, Πab(g)=0 . Using these and employing (4.6) one can construct the action (4.3) on the manifold MO×G . The corresponding background including metric and antisymmetric two-form field are given by

4.13 ds2=2dx2-η2(ρ+2)e-4xdy2+2e-2xdydu+ρdv2,B=κe-2xdudy+A~ρe-2xdvdy,

Graph

which is nothing but the YB deformed background GL(2,R)i(η,A~,κ) as was represented in Table 1. Thus, we showed that the background GL(2,R)i(η,A~,κ) can be considered as original model from a dual pair of σ -models related by Poisson-Lie symmetry. In this manner one can obtain the spectator-dependent matrices for all backgrounds of Table 1. The results for the spectator-dependent matrices are summarized in Table 2.

The dual model

The dual model is constructed on a 2+2 -dimensional manifold M~O×G~ with two-dimensional Abelian Lie group G~=2A1 acting freely on it. In the same way to construct out the dual σ -model we parameterize the corresponding Lie group (Abelian Lie group 2A1 ) with coordinates x~μ={x~,y~} . In order to calculate the components of the right invariant one-forms on the dual Lie group we parametrize an element of the group as

4.14 g~=ex~T~1ey~T~2.

Graph

We then obtain

4.15 R~±1=±x~,R~±2=±y~.

Graph

Utilizing relation (4.7) for untilded quantities we get

4.16 Π~ab=0-2y~2y~0.

Graph

Now inserting (4.12) and (4.16) into equations (4.8) one can obtain dual couplings, giving us

E~ab=1Δη2(2+ρ)2-y~y~-1,ϕ~β(1)a=1Δy~(κ-1)A~y~ρ(κ-1)A~ρ,

Graph

4.17 ϕ~α(2)b=1Δ-y~(1+κ)(1+κ)-A~y~ρA~ρ,ϕ~αβ=1Δ(1-κ2)-A~(1+κ)ρA~(1-κ)ρρΔ-A~2ρ2,

Graph

where Δ=η2(ρ+2)-2y~2 . Finally, inserting the above results into action (4.5), the corresponding metric and the antisymmetric tensor field are worked out to be

4.18 ds~2=1Δ[12η2(ρ+2)dx~2-dy~2+(1-κ2)du2+(ρΔ-A~2ρ2)dv2-2y~dx~du+2κdy~du+2A~ρ(dy~dv-κdvdu)],B~=1Δ[y~dy~dx~+y~κdx~du+dudy~+y~A~ρdx~dv+A~ρdvdu].

Graph

Summary and concluding remarks

We have obtained the inequivalent classical r-matrices for the gl(2,R) Lie algebra as the solutions of (m)CYBE by using its corresponding automorphism transformation. Using these we have constructed the YB deformations of the GL(2,R) WZW model. Our results including twelve models have been summarized in Table 1. We have shown that each of these models can be obtained from a Poisson-Lie T-dual σ -model in the presence of the spectator fields when the dual Lie group is considered to be Abelian. This means that all deformed models have Poisson-Lie symmetry just as undeformed WZW model on the GL(2,R) . In fact, Poisson-Lie symmetry has been preserved under the YB deformation. Since all information related to the deformation of models is collected in the spectator-dependent background matrices E0,F(1),F(2) and F, it seems that will be possible for another choice of these matrices (except ours), other integrable backgrounds can be made. This is a question that we will address in the future and hope to find such backgrounds.

Acknowledgements

This work has been supported by the research vice chancellor of Azarbaijan Shahid Madani University under research fund No. 97/231.

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The work presented in this article is purely theoretical, and therefore there is no associated data.]

References 1 Klimcik C. Yang-Baxter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models and ds/Ads T-duality. J. High Energy Phys.. 2002; 12: 051. 2002JHEP...12..051K. 1960481. 10.1088/1126-6708/2002/12/051arXiv:hep-th/0210095 2 Klimcik C. On integrability of the Yang-Baxter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model. J. Math. Phys.. 2009; 50: 043508. 2009JMP....50d3508K. 2513996. 10.1063/1.3116242arXiv:0802.3518 [hep-th] 3 Klimcik C. Integrability of the bi-Yang-Baxter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model. Lett. Math. Phys.. 2014; 104: 1095. 2014LMaPh.104.1095K. 3229167. 10.1007/s11005-014-0709-yarXiv:1402.2105 [math-ph] 4 Hoare B. Integrable deformations of sigma models. J. Phys. A: Math. Theor.. 2022; 55: 093001. 2022JPhA...55i3001H. 4378885. 10.1088/1751-8121/ac4a1earXiv:2109.14284v3 [hep-th] 5 Balog J, Forgács P, Horváth Z, Palla L. A new family of SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)$$\end{document} symmetric integrable sigma models. Phys. Lett. B. 1994; 324: 403. 1994PhLB..324..403B. 1269523. 10.1016/0370-2693(94)90213-5arXiv:hep-th/9307030 6 Cherednik IV. Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models. Theor. Math. Phys.. 1981; 47: 422. 10.1007/BF01086395 7 Fateev VA. The sigma model (dual) representation for a two-parameter family of integrable quantum field theories. Nucl. Phys. B. 1996; 473: 509. 1996NuPhB.473..509F. 1403533. 10.1016/0550-3213(96)00256-8 8 Matsumoto T, Yoshida K. Yang-Baxter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models based on the CYBE. Nucl. Phys. B. 2015; 893: 287. 2015NuPhB.893..287M. 3318725. 10.1016/j.nuclphysb.2015.02.009arXiv:1501.03665 [hep-th] 9 Delduc F, Magro M, Vicedo B. An integrable deformation of the AdS5×S5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS_5 \times S^5$$\end{document} superstring action. Phys. Rev. Lett.. 2014; 112: 051601. 2014PhRvL.112e1601D. 10.1103/PhysRevLett.112.051601arXiv:1309.5850 [hep-th] Kawaguchi I, Matsumoto T, Yoshida K. Jordanian deformations of the AdS5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_5\times $$\end{document}S5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document} superstring. J. High Energy Phys.. 2014; 04: 153. 2014JHEP...04..153K. 10.1007/JHEP04(2014)153arXiv:1401.4855 [hep-th] Borsato R, Wulff L. On non-abelian T-duality and deformations of supercoset string σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models. J. High Energy Phys.. 2017; 10: 024. 2017JHEP...10..024B. 3731189. 10.1007/JHEP10(2017)024arXiv:1706.10169 [hep-th] Osten D, van Tongeren SJ. Abelian Yang-Baxter deformations and TsT transformations. Nucl. Phys. B. 2017; 915: 184. 2017NuPhB.915..184O. 3598695. 10.1016/j.nuclphysb.2016.12.007arXiv:1608.08504 [hep-th] Borsato R, Wulff L. Integrable deformations of T-Dual σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} models. Phys. Rev. Lett.. 2016; 117: 251602. 2016PhRvL.117y1602B. 3660486. 10.1103/PhysRevLett.117.251602arXiv:1609.09834 [hep-th] Delduc F, Magro M, Vicedo B. Integrable double deformation of the principal chiral model. Nucl. Phys. B. 2015; 891: 312. 2015NuPhB.891..312D. 3300844. 10.1016/j.nuclphysb.2014.12.018arXiv:1410.8066 [hep-th] Kyono H, Yoshida K. Yang-Baxter invariance of the Nappi-Witten model. Nucl. Phys. B. 2016; 905: 242. 2016NuPhB.905..242K. 3473527. 10.1016/j.nuclphysb.2016.02.017arXiv:1511.00404 [hep-th] Klimcik C. Yang-Baxter σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model with WZNW term as ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \epsilon $$\end{document}-model. Phys. Lett. B. 2017; 772: 725. 2017PhLB..772..725K. 10.1016/j.physletb.2017.07.051arXiv:1706.08912 [hep-th] Demulder S, Driezen S, Sevrin A, Thompson D. Classical and quantum aspects of Yang-Baxter Wess-Zumino models. J. High Energy Phys.. 2018; 03: 041. 2018JHEP...03..041D. 3798544. 10.1007/JHEP03(2018)041arXiv:1711.00084 [hep-th] Hoare B, Lacroix S. Yang-Baxter deformations of the principal chiral model plus Wess-Zumino term. J. Phys. A: Math. Theor.. 2020; 53: 505401. 4188794. 10.1088/1751-8121/abc43darXiv:2009.00341 [hep-th] A. Eghbali, T. Parvizi, A. Rezaei-Aghdam, Yang-Baxter deformations of WZW model on the Heisenberg Lie group. Nucl. Phys. B 967, 115423 (2021). arXiv:2103.01646 [hep-th] Eghbali A, Parvizi T, Rezaei-Aghdam A. Yang-Baxter deformation of WZW model based on Lie supergroups: the cases of GL(1|1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL(1|1)$$\end{document} and (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C^3+A)$$\end{document}. Phys. Lett. B. 2023; 838: 137727. 10.1016/j.physletb.2023.137727arXiv:2212.13813 [hep-th] Eghbali A. Exact conformal field theories from mutually T-dualizable σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-models. Phys. Rev. D. 2018; 99: 026001. 2019PhRvD..99b6001E. 3982355. 10.1103/PhysRevD.99.026001arXiv:1812.07664 [hep-th] C.R. Nappi, E. Witten, A WZW model based on a nonsemisimple group. Phys. Rev. Lett. 71, 3751 (1993). arXiv:hep-th/9310112 A. Ballesteros, F. Herranz, P. Parashar, Multiparametric quantum gl(2): Lie bialgebras, quantum R-matrices and non-relativistic limits. J. Phys. A: Math. Gen. 32, 2369 (1999). arXiv:math-/9806149 Christodoulakis T, Papadopoulos GO, Dimakis A. Automorphisms of real four-dimensional Lie algebras and the invariant characterization of homogeneous 4-spaces. J. Phys. A: Math. Gen.. 2002; 36: 427. 2003JPhA...36..427C. 1960069. 10.1088/0305-4470/36/2/310arXiv:gr-qc/0209042 A. Rezaei-Aghdam, M. Sephid, Complex and bi-Hermitian structures on four dimensional real Lie algebras. J. Phys. A: Math. Theor. 43, 325210 (2010). arXiv:1002.4285 [math-ph] Borsato R, Wulff L. Marginal deformations of WZW models and the classical Yang-Baxter equation. J. Phys. A: Math. Theor.. 2019; 52: 225401. 2019JPhA...52v5401B. 3953818. 10.1088/1751-8121/ab1b9carXiv:1812.07287 [hep-th] Borsato R, Wulff L. Target space supergeometry of η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-deformed strings. J. High Energy Phys.. 2016; 10: 045. 2016JHEP...10..045B. 3577514. 10.1007/JHEP10(2016)045arXiv:1608.03570 [hep-th] Callan CG, Friedan D, Martinec E, Perry M. Strings in background fields. Nucl. Phys. B. 1985; 262: 593. 1985NuPhB.262..593C. 819433. 10.1016/0550-3213(85)90506-1 Klimčík C, Ševera P. Dual non-Abelian duality and the Drinfeld double. Phys. Lett. B. 1995; 351: 455. 1995PhLB..351..455K. 1335189. 10.1016/0370-2693(95)00451-ParXiv:hep-th/9502122 Klimčík C. Poisson-Lie T-duality. Nucl. Phys. (Proc. Suppl.) B. 1996; 46: 116. 1996NuPhS..46..116K. 1411464. 10.1016/0920-5632(96)00013-8arXiv:hep-th/9509095 Sfetsos K. Poisson-Lie T-duality and supersymmetry. Nucl. Phys. (Proc. Suppl.) B. 1997; 56: 302-309. 1997NuPhS..56..302S. 1462191. 10.1016/S0920-5632(97)00339-3arXiv:hep-th/9611199 V.G. Drinfeld, Quantum groups, in Proc. Intern. Cong. Math., Berkeley, vol. 1. Amer. Math. Soc.. vol. 1987, pp. 798–820 (1986) Footnotes In the rest of the paper, however, we will use the standard lightcone variables σ±=(τ±σ)/2 together with ±=(τ±σ)/2 . Our conventions are such that the alternating tensor is ε+-=1 . Note that the YB deformed WZW model (2.1) is invariant under the automorphism transformation [[19]]. In Ref. [[26]], in order to classify the YB deformations of the AdS3×S3 string, the CYBE has been solved for the Lie algebra sl(2,R)Lsu(2)Lsl(2,R)Rsu(2)R . There, authors have considered the basis {S0,S+,S-} for the sl(2,R) with the commutation relations [S0,S±]=±S±,[S+,S]=2S0 , and Ta,(a=1,2,3) for the su(2) with [Ta,Tb]=-ϵabcTc . In both cases of sl(2,R) and su(2), they have used a bar to distinguish the right copy of the algebra from left copy. In their calculations, they have focused on the subalgebra generated by the generators {S0,S+,S¯0,S¯-,T1,T¯2} , and have ignored the transformations generated by {S-,S¯+} . For the algebra sl(2)Lsl(2)Rsu(2)Lsu(2)R with the generators {S0,S+,S¯0,S¯-,T1,T¯2} , it has been obtained ten non-Abelian R -matrices as the solutions of the CYBE with ω=0 . We know that gl(2,R)=sl(2,R)u(1) is embedded inside sl(2,R)su(2) , therefore, with dimensional reduction from six to four, we expect that one can obtain the r-matrices of Theorem 3.1 (only cases ω=0 ) from those of [[26]]. By checking this we found out that the R -matrices of those will be only in agreement with the r-matrices ri,rii,riii,riv,rvi and rvii of ours. Thus, the r-matrix rv of ours cannot be concluded by reducing the R -matrices of those. In fact, we have one more solution from those of [[26]].

By Ali Eghbali; Tayebe Parvizi and Adel Rezaei-Aghdam

Reported by Author; Author; Author

Titel:
Yang-Baxter deformations of the $$GL(2,{\mathbb {R}})$$ G L ( 2 , R ) WZW model and non-Abelian T-duality
Autor/in / Beteiligte Person: Eghbali, Ali ; Parvizi, Tayebe ; Rezaei-Aghdam, Adel
Link:
Zeitschrift: European Physical Journal C: Particles and Fields, Jg. 83 (2023), Heft 10, S. 1-12
Veröffentlichung: SpringerOpen, 2023
Medientyp: academicJournal
ISSN: 1434-6052 (print)
DOI: 10.1140/epjc/s10052-023-12084-8
Schlagwort:
  • Astrophysics
  • QB460-466
  • Nuclear and particle physics. Atomic energy. Radioactivity
  • QC770-798
Sonstiges:
  • Nachgewiesen in: Directory of Open Access Journals
  • Sprachen: English
  • Collection: LCC:Astrophysics ; LCC:Nuclear and particle physics. Atomic energy. Radioactivity
  • Document Type: article
  • File Description: electronic resource
  • Language: English

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -