Zum Hauptinhalt springen

Comparison of anti-Müllerian hormone and antral follicle count in the prediction of ovarian response: a systematic review and meta-analysis

Liu, Yang ; Pan, Zhengmei ; et al.
In: Journal of Ovarian Research, Jg. 16 (2023), Heft 1, S. 1-11
Online academicJournal

Comparison of anti-Müllerian hormone and antral follicle count in the prediction of ovarian response: a systematic review and meta-analysis 

Background: Increasingly studies reported that the Anti-Müllerian hormone (AMH) seems to be a promising and reliable marker of functional ovarian follicle reserve, even better than the AFC test. Our study aimed to conduct a meta-analysis to assess the predictive value of AMH and AFC for predicting poor or high response in IVF treatment. An electronic search was conducted, and the following databases were used: PubMed, EMBASE, and the Cochrane Library (up to 7 May 2022). The bivariate regression model was used to calculate the pooled sensitivity, specificity, and area under the receiver operator characteristic (ROC) curve. Subgroup analyses and meta-regression also were used in the presented study. Overall performance was assessed by estimating pooled ROC curves between AMH and AFC. Results: Forty-two studies were eligible for this meta-analysis. Comparison of the summary estimates for the prediction of poor or high response showed significant difference in performance for AMH compared with AFC [poor (sensitivity: 0.80 vs 0.74, P < 0.050; specificity: 0.81 vs 0.85, P < 0.001); high (sensitivity: 0.81 vs 0.87, P < 0.001)]. However, there were no significant differences between the ROC curves of AMH and AFC for predicting high (P = 0.835) or poor response (P = 0.567). The cut-off value was a significant source of heterogeneity in the present study. Conclusions: The present meta-analysis demonstrated that both AMH and AFC have a good predictive ability to the prediction of poor or high responses in IVF treatment.

Keywords: Anti-Müllerian hormone; Antral follicle count; Ovarian response; In vitro fertilization; Meta-analysis

Yang Liu and Zhengmei Pan contributed equally to this work.

Background

Controlled ovarian stimulation (COS) is the key to successful assisted reproductive technology (ART). Individualization of COS in in vitro fertilization (IVF) treatments should be based on assessing ovarian reserve and predicting ovarian response for every patient [[1]]. The starting point is to identify if a patient is likely to have a normal, poor, or high response, and choose the best treatment protocol tailored to this prediction [[1]]. Patients' characteristics and biomarkers could accurately predict ovarian response [[2]]. However, although numerous biochemical measures have been developed to predict IVF outcomes, some biochemical measures, such as estradiol (E2), luteinizing hormone (LH), basal follicle-stimulation hormone (FSH), and inhibin concentrations, fluctuate greatly on the day of the menstrual cycle and do not significantly change with decreasing of ovarian reserve, thus they have limited use owing to a low predictive value [[3]]. Studies have shown that antral follicle count (AFC) is a better indicator to predict ovarian response than other endocrine markers [[5]].

AMH, a dimeric glycoprotein, is a member of the extended transforming growth factor-β (TGF-β) family [[7]]. AMH production diminishes as the follicles become FSH-dependent [[8]]. Serum levels are not affected during the menstrual cycle, are most probably not manipulated by exogenous steroid administration, and are closely correlated with reproductive age [[10]]. Therefore, AMH has been used to predict poor and high response in IVF. Several studies argued that the level of AMH is a better predictor of ovarian response than the AFC [[11]]. However, the data remains conflicting and inconsistent [[10]]. Furthermore, some studies continue to advocate both AFC and AMH as possible predictors of ovarian response [[12]]. Although Broer and his colleagues [[13]] have performed meta-analyses in 2009 and 2011 and demonstrated that AMH has at least the same level of accuracy and clinical value for the prediction of poor or excessive response as AFC, the number of the included studies in their meta-analysis were small (N = 5–12). Therefore, our study aimed to conduct a meta-analysis that included more eligible studies, to assess the diagnostic value of AMH and AFC for predicting poor or high response in IVF treatment.

Methods

The present meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [[15]].

Search strategy and data sources

The data sources include these electronic databases: PubMed, EMBASE, and the Cochrane Library (up to 1 May 2022). The following keywords were used: in vitro fertilization (IVF), in vitro fertilization, fertilization in vitro, assisted, or intracytoplasmic in combination with Anti-Mullerian Hormone (AMH), Mullerian-Inhibiting Factor, Mullerian-Inhibitory Substance, Mullerian Inhibiting Hormone, or Antral Follicle Count (AFC). There was no language limitation, and we also retrieved articles by manual screening. A complete search strategy for literature search has provided in Supplementary material.

Inclusion and exclusion criteria

The inclusion criteria were based on the Population, Intervention, Comparator, Outcomes, and Study designs (PICOS) structure: P): adult infertile women; I) patients receiving COS for IVF/ICSI; C) AMH or AFC to predict ovarian reserve; O) ovarian response including poor or high response; S) prospective design. Besides, if 2 × 2 tables were constructed from the data presented in the paper, the study was included for final analysis in this meta-analysis. Reviews, conference abstracts, case reports, letters, and animal trials were excluded from this study.

Data extraction

Information was extracted from eligible studies by two authors independently. The following information was included: the authors of the articles, publication year, study location, definition of poor or high response, sample size, true positives (TP), false positives (FP), false negatives (FN), true negatives (TN), and cut-off value. Disagreements were resolved by discussion among all authors.

Study quality assessment

Our study adopted the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) [[16]] to assess the quality of the included articles, which was the most recommended quality assessment tool for diagnostic accuracy tests. It consists of four main components: patient selection, index test, reference standard, and flow and timing. All components will be assessed for risk of bias, and the first 3 components will also be assessed for clinical applicability. The risk of bias is judged by signature questions, but there are no signature questions for clinical applicability. The "yes", "no" or "uncertain" answers to the signature questions included in each component may correspond to a bias risk rating of "low", "high" or "uncertain". If the answer to all the signature questions in a range is "yes", then the risk of bias can be assessed as low; If the answer to one of the questions is "no", the risk of bias is judged to be "high". The "uncertain" refers to the fact that the literature does not provide detailed information that makes it difficult for the evaluator to make a judgment, and can only be used when the reported data is insufficient.

Statistical analysis

This meta-analysis used Stata V.14.0 (Stata Corp LP) to conduct all statistical analyses. The Cochrane Q and I2 statistics were used to test the heterogeneity among all studies. I2 > 50% indicates the existence of heterogeneity. The bivariate regression model was used to calculate the pooled sensitivity, specificity, and area under the receiver operator characteristic (ROC) curve, and their 95% confidence intervals (CIs). Overall performance was assessed by estimating a pooled ROC curve between AMH and AFC. Furthermore, meta-regression was used to explore the causes of heterogeneity between the studies. Subgroup analyses were performed based on the cut-off value and sample size. Deeks' funnel plot was used to test publication bias. A two-tailed probability value below 0.05 was regarded as statistically significant.

Results

Study selection and study characteristics

In sum, 7327 articles were identified in electronic and manual searches. However, 1847 articles were excluded for duplication, and another 2698 articles were excluded due to study types (reviews, meeting abstracts, letters, animal trials, and case reports). In addition, 2680 records were excluded after reviewing the title and abstract, and we excluded 60 records after reviewing the full text of 102 articles. Finally, 42 articles [[10], [17]-[56]] were included in this meta-analysis (Fig. 1).

Graph: Fig. 1Flow diagram of the process of studies selection

The characteristics of the eligible studies are listed in Tables 1 and 2. The sample sizes of participants in each study ranged from 44 to 571, and this meta-analysis included 7190 individuals. Of the 42 studies, all studies were prospective design. The publication year of 42 studies ranged from 2002 to 2021. The included studies were from different countries, including China (n = 3), Spain (n = 4), the UK (n = 7), the USA (n = 4), and so on. AMH was used in 29 studies, and AFC in 15 studies in terms of poor response. As for the high response, AMH was used in 13 studies, and AFC in 6 studies.

Table 1 Characteristics of the studies included of AMH for predicting ovarian response

Author

Region

Definition of ovarian response

TP

FP

FN

TN

Cut-off

Poor response

Li et al. 2016 [41]

China

≤ 5 oocytes

23

47

21

321

1.1 ng/ml

Fouda et al. 2010 [27]

Egypt

< 3 follicles

8

18

2

32

0.9 ng/ml

Singh et al. 2013 [51]

India

< 4 oocytes

8

9

2

36

NS

Martínez et al. 2013 [42]

Spain

< 6 oocytes

19

29

8

47

2.31 ng/ml

Baker et al. 2018 [22]

USA

≤ 4 oocytes

20

13

7

120

0.93 ng/ml

Kamel et al. 2014 [57]

Egypt

NS

30

1

5

74

2.8ug/l

Fabregues et al. 2018 [25]

Spain

≤ 3 oocytes

43

77

8

310

NS

Heidar et al. 2015 [30]

Iran

≤ 3 oocytes

16

32

6

134

1.2 ng/ml

Ashrafi et al. 2017 [20]

Iran

≤ 4 oocytes

90

116

32

312

1.05 ng/ml

Neves et al. 2020 [48]

Belgiuma

≤ 3 oocytes

46

56

4

113

1.00 ng/ml

Islam et al. 2016 [31]

Egypt

≤ 3 oocytes

9

40

6

45

1.4 ng/ml

Baker et al. 2021 [21]

USA, Canada

≤ 4 oocytes

47

43

27

355

0.93 ng/ml

Palhares et al. 2018 [17]

Brazil

≤ 3 oocytes

36

41

9

55

1.5 ng/ml

Jayaprakasan et al. 2010 [34]

UK

≤ 3 oocytes

15

32

0

88

0.99 ng/ml

Tolikas et al. 2011 [18]

Greece

< 4 oocytes

20

18

9

43

2.74 ng/ml

Tremellen et al. 2005 [54]

Australia

≤ 4 oocytes

16

8

4

47

8.1 pmol/l

Kunt et al. 2011 [37]

Turkey

< 5 oocytes

46

14

0

120

2.97 ng/ml

Marca et al. 2007 [38]

Italy

< 4 oocytes

10

3

2

33

0.75 ng/ml

Mutlu et al. 2013 [10]

Turkey

< 4 oocytes

34

20

15

123

0.94 ng/ml

Peñarrubia et al. 2005 [49]

Spain

< 3 follicles

11

2

9

58

4.9 pmol/l

Nardo et al. 2009 [46]

UK

< 4 follicles

13

50

2

101

1.00 ng/ml

Fiçicioglu et al. 2006 [26]

Turkey

< 5 follicles

10

3

1

30

0.25 pg/ml

McIlveen et al. 2007 [43]

UK

≤ 4 oocytes

11

26

2

45

1.25 ng/ml

Muttukrishna et al. 2004 [44]

UK

< 4 follicles

15

14

2

38

0.1 ng/ml

Nakhuda et al. 2007 [45]

USA

NS

20

8

2

36

0.35 ng/ml

Gnoth et al. 2008 [29]

Germany

≤ 4 oocytes

32

58

1

41

1.26 ng/ml

Nelson et al. 2007 [47]

UK

≤ 2 oocytes

14

29

5

292

5 pmol/l

van Rooij et al. 2002 [55]

Netherlands

< 4 oocytes

21

9

14

75

0.3 ng/ml

Lee et al. 2011 [39]

Taiwan

NS

11

16

6

93

0.68 ng/ml

High response

Li et al. 2016 [41]

China

> 15 oocytes

165

149

38

219

2.6 ng/ml

Akbari Sene et al. 2021 [50]

Iran

> 15 oocytes

31

16

10

43

4.95 ng/ml

Izhar et al. 2021 [32]

Pakistan

NS

50

14

4

208

6.43 ng/ml

Tan et al. 2021 [53]

China

> 15 oocytes

137

15

30

154

3.6 ng/ml

Heidar et al. 2015 [30]

Iran

> 12 oocytes

30

34

23

93

3.40 ng/ml

Ashrafi et al. 2017 [20]

Iran

≥ 15 oocytes

79

129

40

302

2.5 ng/ml

Vembu et al. 2017 [11]

India

≥ 20 oocytes

11

15

2

132

4.85 ng/ml

Neves et al. 2020 [48]

Belgiuma

> 15 oocytes

13

16

11

179

2.25 ng/ml

Nardo et al. 2009 [46]

UK

> 20 oocytes

14

45

2

104

3.5 ng/ml

Eldar-Geva et al. 2005 [24]

Israel

> 20 oocytes

12

4

5

35

3.5 ng/ml

Aflatoonian et al. 2009 [19]

Iran

> 15oocytes

42

22

3

76

34.5 pmol/l

Lee et al. 2008 [40]

China

NS

19

45

2

196

3.36 ng/ml

Nelson et al. 2007 [47]

UK

≥ 21 oocytes

15

16

10

299

25 pmol/l

NS Not stated, TP True positive, FP False positive, FN False negative, TN True negative aRegion included Belgium, Spain, Germany, Italy

Table 2 Characteristics of the studies included of AFC for predicting ovarian response

Author

Region

Definition of ovarian response

TP

FP

FN

TN

Cut-off

Poor response

Fabregues et al. 2018 [25]

Spain

≤ 3 oocytes

40

61

10

326

NS

Ashrafi et al. 2017 [20]

Iran

≤ 4 oocytes

100

116

22

312

8

Neves et al. 2020 [48]

Belgiuma

≤ 3 oocytes

42

32

8

137

6

Islam et al. 2016 [31]

Egypt

≤ 3 oocytes

13

34

2

51

7

Palhares et al. 2018 [17]

Brazil

≤ 3 oocytes

36

40

9

56

8

Frattarelli et al. 2003 [28]

USA

< 3 oocytes

7

10

16

234

4

Jayaprakasan et al. 2010 [34]

UK

≤ 3 oocytes

14

14

1

106

10

Tolikas et al. 2011 [18]

Greece

< 4 oocytes

21

12

8

49

5

Mutlu et al. 2013 [10]

Turkey

< 4 oocytes

45

13

4

130

6

Jayaprakasan et al. 2007 [35]

UK

< 4 follicles

5

4

0

91

6

McIlveen et al. 2007 [43]

UK

≤ 4 oocytes

6

14

7

57

5

Bancsi et al. 2004 [23]

Netherlands

< 4 oocytes

22

10

14

74

4

Yong et al. 2003 [56]

UK

< 3 oocytes

1

1

7

37

4

Järvelä et al. 2003 [32]

Canada

< 5 follicles

10

5

2

28

4

Soldevila et al. 2007 [52]

Spain

≤ 5 follicles

75

52

46

154

8

High response

Izhar et al. 2021 [32]

Pakistan

NS

51

6

3

216

18

Tan et al. 2021 [53]

China

> 15 oocytes

145

19

22

150

18

Ashrafi et al. 2017 [20]

Iran

≥ 15 oocytes

87

116

32

315

15

Neves et al. 2020 [48]

Belgiuma

≤ 3 oocytes

19

46

5

149

10

Eldar-Geva et al. 2005 [24]

Israel

> 20 oocytes

16

26

1

13

14

Aflatoonian et al. 2009 [19]

Iran

> 15oocytes

40

8

5

90

16

NS Not stated, TP True positive, FP False positive, FN False negative, TN True negative aRegion included Belgium, Spain, Germany, Italy

Study quality

We adopted the QUADAS-2 to assess the quality of concerning studies (Supplementary material). Regarding risk of bias, 5 studies included consecutive patients, and 37 studies were low risk in index test. Besides, as for applicability of concern, all studies were low risk in both patient selection and index test.

Accuracy of AMH and AFC for predicting poor response

The pooled predictive ability of AMH and AFC for poor response in IVF/ICSI treatments was presented in Table 3. The overall pooled sensitivity and specificity of AMH were 0.80 (95%CI: 0.74–0.85) and 0.81 (95%CI: 0.75–0.85), respectively. The test for heterogeneity demonstrated that there was significant heterogeneity in both sensitivity and specificity (I2 = 68.26% and 92.43%, respectively). The overall ROC curve was presented in Fig. 2A, and AUC was 0.87 (95%CI: 0.84–0.90). The meta-analysis's overall pooled sensitivity and specificity of AFC were 0.73 (95%CI: 0.62–0.83) and 0.85 (95%CI: 0.78–0.90), respectively. Heterogeneity was found in both sensitivity and specificity (I2 = 85.28% and 91.76%, respectively). The overall ROC curve was presented in Fig. 2B, and AUC was 0.87 (95%CI: 0.84–0.90).

Table 3 Results of the subgroup analysis

Subgroup

Number (n)

Sensitivity (95%CI)

Specificity (95%CI)

PLR (95%CI)

NLR (95%CI)

DOR (95%CI)

Cut-off value

AMH-poor response

Overall

29

0.80 (0.74, 0.85)

0.81 (0.75, 0.85)

4.10 (3.20, 5.30)

0.25 (0.19, 0.32)

14.39 (10.26, 20.17)

< 1.00 ng/ml 1

10

0.79 (0.69, 0.89)

0.84 (0.78, 0.89)

4.54 (3.55, 5.83)

0.35 (0.27, 0.44)

16.07 (11.53, 22.39)

≥ 1.00 ng/ml 0

12

0.82 (0.74, 0.90)

0.70 (0.62, 0.77)

2.59 (2.05, 3.28)

0.34 (0.24, 0.49)

8.13 (5.05, 13.09)

AMH-high response

Overall

13

0.81 (0.75, 0.86)

0.84 (0.77, 0.89)

5.00 (3.40, 7.30)

0.22 (0.16, 0.30)

22.67 (12.85, 40.00)

< 4.00 ng/ml

8

0.75 (0.66, 0.83)

0.80 (0.72, 0.88)

3.63 (2.53, 5.19)

0.34 (0.24, 0.49)

11.83 (5.89, 23.73)

≥ 4.00 ng/ml

3

0.86 (0.76, 0.96)

0.88 (0.79, 0.97)

6.93 (2.56, 18.76)

0.17 (0.06, 0.52)

41.01 (5.36, 313.99)

AFC-poor response

Overall

15

0.73 (0.62, 0.83)

0.85 (0.78, 0.90)

4.26 (3.23, 5.62)

0.33 (0.22, 0.49)

13.93 (8.53, 22.74)

< 6

7

0.61 (0.44, 0.79)

0.90 (0.84, 0.95)

5.18 (3.41, 7.85)

0.42 (0.24, 0.76)

14.06 (5.93, 33.34)

≥ 6

7

0.83 (0.72, 0.94)

0.79 (0.69, 0.88)

3.60 (2.53, 5.13)

0.27 (0.17, 0.44)

12.60 (6.31, 25.14)

AFC-high response

Overall

6

0.85 (0.77, 0.91)

0.83 (0.64, 0.94)

5.48 (2.50, 12.02)

0.18 (0.10, 0.32)

35.62 (10.06, 126.08)

< 15

3

0.76 (0.69, 0.84)

0.64 (0.45, 0.82)

2.33 (1.41, 3.85)

0.35 (0.26, 0.46)

8.02 (5.32, 12.10)

≥ 15

3

0.89 (0.85, 0.93)

0.94 (0.89, 0.99)

13.61 (5.92, 31.31)

0.12 (0.07, 0.20)

126.72 (33.10, 485.15)

Definition of poor response (< 4 oocytes)

AMH

11

0.78 (0.70, 0.85)

0.77 (0.69, 0.83)

3.24 (2.50, 4.21)

0.33 (0.24, 0.45)

11.27 (6.62, 19.19)

AFC

9

0.81 (0.74, 0.87)

0.80 (0.73, 0.87)

4.00 (2.76, 5.79)

0.27 (0.19, 0.38)

16.76 (8.76, 30.18)

Sample size

AMH-Poor response

< 200

23

0.81 (0.75, 0.87)

0.80 (0.73, 0.86)

4.12 (3.00, 5.65)

0.23 (0.17, 0.32)

17.80 (10.54, 20.05)

≥ 200

6

0.74 (0.61, 0.84)

0.83 (0.75, 0.88)

4.26 (3.15, 5.78)

0.32 (0.22, 0.47)

13.45 (8.72, 20.74)

AMH-High response

< 200

8

0.83 (0.72, 0.91)

0.78 (0.65, 0.87)

3.79 (2.29, 6.26)

0.21 (0.12, 0.37)

17.62 (7.50, 41.44)

≥ 200

11

0.81 (0.73, 0.87)

0.87 (0.79, 0.92)

6.12 (3.63, 10.33)

0.22 (0.15, 0.33)

27.66 (12.24, 62.49)

AFC-Poor response

< 200

10

0.77 (0.60, 0.88)

0.85 (0.76, 0.91)

5.27 (3.16, 8.79)

0.27 (0.15, 0.50)

19.23 (7.82, 47.30)

≥ 200

5

0.69 (0.50, 0.84)

0.84 (0.73, 0.91)

4.33 (2.86, 6.53)

0.36 (0.22, 0.59)

11.87 (6.83, 20.63)

AFC-high response

< 200

2

0.89 (0.78, 0.99)

0.70 (0.35, 0.99)

-

-

-

≥ 200

4

0.84 (0.76, 0.92)

0.88 (0.75, 0.99)

6.70 (2.57, 17.45)

0.17 (0.08, 0.37)

39.11 (7.15, 213.98)

PLR Positive likelihood ratio, NLR Negative likelihood ratio, DOR Diagnostic odds ratio

Graph: Fig. 2The summary receiver operating characteristic (SROC) curve of AMH and AFC for the prediction of ovarian response. A AMH-poor response; B AFC- poor response; C AMH-high response; D AFC-high response

Accuracy of AMH and AFC for predicting high response

Table 3 presented the pooled predictive ability of AMH and AFC for high response in IVF/ICSI treatments. The meta-analysis's overall pooled sensitivity and specificity of AMH were 0.81 (95%CI: 0.76–0.86) and 0.84 (95%CI: 0.77–0.90), respectively. Heterogeneity was found in both sensitivity and specificity (I2 = 83.00% and95.90%, respectively). The overall ROC curve was presented in Fig. 2C, and AUC was 0.89 (95%CI: 0.86–0.91). The overall pooled sensitivity and specificity of AFC were 0.85 (95%CI: 0.77–0.91) and 0.83 (95%CI: 0.64–0.94), respectively. The test for heterogeneity demonstrated that there was significant heterogeneity in both sensitivity and specificity (I2 = 74.53% and 96.70%, respectively). The overall ROC curve was presented in Fig. 2D, and AUC was 0.90 (95%CI: 0.87–0.92).

Subgroup analysis

Comparison of the summary estimates for the prediction of poor or high response showed significant difference in performance for AMH compared with AFC [poor (sensitivity: 0.80 vs 0.74, P < 0.050; specificity: 0.81 vs 0.85, P < 0.001); high (sensitivity: 0.81 vs 0.87, P < 0.001)]. There were no significant differences between the AUC of AMH and AFC for predicting high (P = 0.835) or poor response (P = 0.567). Besides, in the same definition of poor response (< 4 oocytes), AMH and AFC tests had significant differences in sensitivity (0.78 vs 0.81, P < 0.001) and specificities (0.77 vs 0.80, P < 0.001) (Table 3). However, no significant differences were found between the AUC of AMH and AFC (P = 0.800).

Meta-regression analysis

For AMH, the cut-off value was a significant source of heterogeneity (poor: P = 0.020). For AFC, the cut-off value was a significant source of heterogeneity (poor: P < 0.010; high: P < 0.050). However, sample size was not the significant source of heterogeneity (P > 0.05).

Publication bias

Deek's plot indicated that there was no publication bias in AMH for predicting poor response (P = 0.510, Fig. 3A) and high response AFC (P = 0.348, Fig. 3C), and AFC for predicting poor (P = 0.396, Fig. 3B) and high response (P = 0.818, Fig. 3D).

Graph: Fig. 3Deek's funnel plot for the publication bias. A AMH-poor response; B AFC- poor response; C AMH-high response; D AFC-high response

Discussion

Main findings

The present meta-analysis summarizes the available evidence about the accuracy of AMH and the AFC for predicting poor or high response to ovarian stimulation in IVF treatments. Although the differences were significant, both AMH and AFC had similar sensitivities and specificities. It seems that both AMH and AFC have a good discriminatory capacity to predict poor or high response in IVF. Besides, the ROC curves did not indicate a better predictive ability for AMH than for AFC, and the difference was not statistically significant. Our results were consistent with previous studies [[13], [48], [58]]. For example, Broer et al. [[13]] in their meta-analysis thought that both AMH and AFC are accurate predictors of poor or high response to ovarian hyperstimulation, and both tests appear to have clinical value.

Prior research indicated AFC is better than AMH to predict poor ovarian response [[10]]. However, several studies argued that the level of AMH is a better predictor of ovarian response than the AFC [[11], [43]]. In our study, results presented that a comparison of the summary estimates for the prediction of poor or high response showed a significant difference in performance for AMH compared with AFC while there was no significant difference in ROC curves. The discrepancies between studies could be associated with the heterogeneity of the definitions of ovarian response to ovarian stimulation. Therefore, our study conducted a subgroup analysis based on the definition of poor response, and we found that AFC was relatively better than AMH tests in both sensitivity (0.81 vs 0.78, P < 0.001) and specificities (0.80 vs 0.77, P < 0.001) when the poor response was defined as < 4 oocytes. However, although no significant differences were found in ROC curves, AFC seemed to perform slightly better than AMH for predicting poor response (0.87 vs 0.84). Also, Broer et al. [[13]] had similar findings in AFC and AMH for the prediction of high response.

Our study found that the accuracy of AMH and AFC for the prediction of poor or high response had many different kinds of cut-off values, which is difficult for clinical practice. Therefore, the present study performed a subgroup analysis based on the range of cut-off values. The accuracy threshold value of AFC for predicting high response achieved the highest AUC when the cut-off value was ≥ 15. The corresponding AUC was 0.90 (95%CI: 0.88, 0.93) with a sensitivity of 0.89 and a specificity of 0.94, which indicates the predictive ability with this interval is higher than the range of cut-off value < 15.

The characteristics of patients could predict abnormal ovarian response, including age, menstrual cycle length, and body mass index. However, these factors have limited predictive value. Therefore, emerging studies reported that the multivariate models predicted ovarian response, and found the model could improve the predictive power [[17], [59]-[61]]. For example, Honnma et al. [[60]] thought that serum AMH in combination with age is a better indicator than AMH alone. Therefore, clinicians should consider patients' characteristics and biomarkers together to accurately predict ovarian response in IVF treatments.

Clinical implications

The abnormal response may increase patient discomfort and even decrease the chance of pregnancy. According to the register of the Italian national assisted reproduction technique (ART) in 2010, it reported that 6.7% were canceled due to poor ovarian response, and 1.5% due to ovarian hyperstimulation syndrome (OHSS) in 52,676 IVF cycles [[1]]. In other words, more than 4300 cycles were canceled every year for an abnormal response to stimulation with gonadotrophins. Furthermore, approximately 35% of couples abandon IVF treatments for physical and psychological burden, and 10% for inadequate ovarian response in the first cycle [[62]]. Therefore, it is important to reduce the dropout rate in IVF treatments by reducing abnormal responses. Our study found that both AMH and AFC were a good discriminatory capacity to predict poor or high response in IVF. Besides, increasingly studies reported that AMH level is becoming a preferred method for the prediction of ovarian reserve in most women [[7], [63]]. A multivariable approach, combining patient characteristics and AMH also should be taken into account in the evaluation of ovarian response.

Limitations

Several limitations would be noted in this meta-analysis. First, relatively high heterogeneity still existed. Although we found that the cut-off value was a significant source of heterogeneity in the present study, heterogeneity was caused by other factors, such as study quality characteristics, and study populations among all included studies. In addition, we found that the quality of the included studies was poor, so more high-quality studies are needed to confirm our conclusions in the future. Second, language bias may exist due to the inclusion of only English articles in the meta-analysis. Third, the predictive value of AMH and AFC for ovarian response was not always assessed in a head-to-head comparison in the same study. The accuracy of the results will be affected to some extent due to the differences in cut-off value and sample size. For this issue, we have tried to enhance the persuasiveness of the paper through meta regression and subgroup analysis.

Conclusions

In sum, the present meta-analysis demonstrated that both AMH and AFC have a good predictive ability to predict poor or high responses in IVF treatment.

Acknowledgements

Not applicable.

Authors' contributions

Y L and ZM P carried out the studies, participated in collecting data, and drafted the manuscript. YZ W and JM S performed the statistical analysis and participated in its design. Y L and JS C participated in acquisition, analysis, or interpretation of data and draft the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Yunnan Ten Thousand Youth Talent Program [[2018]73], and the Medical Discipline Leader in Health Commission of Yunnan Province [D-2019004].

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Supplementary Information

Graph: Additional file 1.

Abbreviations

• AMH

  • Anti-Müllerian hormone

• ROC

  • Receiver operator characteristic

• COS

  • Controlled ovarian stimulation

• IVF

  • In vitro fertilization

• LH

  • Luteinizing hormone

• FSH

  • Basal follicle-stimulation hormone

• AFC

  • Antral follicle count

• TP

  • True positives

• FP

  • False positives

• FN

  • False negatives

• TN

  • True negatives

• DOR

  • Diagnostic odds ratio

• CIs

  • Confidence intervals

• OHSS

  • Ovarian hyperstimulation syndrome
Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References 1 La Marca A, Sunkara SK. Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice. Hum Reprod Update. 2014; 20: 124-140. 10.1093/humupd/dmt037. 24077980 2 Huang J, Lin J, Gao H, Wang Y, Zhu X, Lu X. Anti-müllerian hormone for the prediction of ovarian response in progestin-primed ovarian stimulation protocol for IVF. Front Endocrinol (Lausanne). 2019; 10: 325. 10.3389/fendo.2019.00325. 31191453 3 Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Stable serum levels of anti-Müllerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod. 2007; 22: 1837-1840. 1:CAS:528:DC%2BD2sXptFOrsLo%3D. 10.1093/humrep/dem101. 17485437 4 Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R. The physiology and clinical utility of anti-Mullerian hormone in women. Hum Reprod Update. 2014; 20: 370-385. 10.1093/humupd/dmt062. 24430863 5 Nahum R, Shifren JL, Chang Y, Leykin L, Isaacson K, Toth TL. Antral follicle assessment as a tool for predicting outcome in IVF–is it a better predictor than age and FSH?. J Assist Reprod Genet. 2001; 18: 151-155. 1:STN:280:DC%2BD3MzkvVOjsg%3D%3D. 10.1023/A:1009424407082. 11411430. 3455595 6 Bancsi LF, Broekmans FJ, Eijkemans MJ, de Jong FH, Habbema JD, te Velde ER. Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril. 2002; 77: 328-336. 10.1016/S0015-0282(01)02983-1. 11821092 7 Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Müllerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014; 20: 688-701. 1:CAS:528:DC%2BC2cXhtlyku7nP. 10.1093/humupd/dmu020. 24821925 8 Bedenk J, Vrtačnik-Bokal E, Virant-Klun I. The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet. 2020; 37: 89-100. 10.1007/s10815-019-01622-7. 31755000 9 Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004; 10: 77-83. 1:CAS:528:DC%2BD2cXms1amtw%3D%3D. 10.1093/molehr/gah015. 14742691 Mutlu MF, Erdem M, Erdem A, Yildiz S, Mutlu I, Arisoy O. Antral follicle count determines poor ovarian response better than anti-Müllerian hormone but age is the only predictor for live birth in in vitro fertilization cycles. J Assist Reprod Genet. 2013; 30: 657-665. 10.1007/s10815-013-9975-3. 23508679. 3663963 Vembu R, Reddy NS. Serum AMH level to predict the hyper response in women with PCOS and non-PCOS undergoing controlled ovarian stimulation in ART. J Hum Reprod Sci. 2017; 10: 91-94. 1:CAS:528:DC%2BC1MXhvVWgu7vM. 10.4103/jhrs.JHRS_15_16. 28904496. 5586096 Ocal P, Sahmay S, Cetin M, Irez T, Guralp O, Cepni I. Serum anti-Müllerian hormone and antral follicle count as predictive markers of OHSS in ART cycles. J Assist Reprod Genet. 2011; 28: 1197-1203. 10.1007/s10815-011-9627-4. 21882017. 3241835 Broer SL, Dólleman M, Opmeer BC, Fauser BC, Mol BW, Broekmans FJ. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum Reprod Update. 2011; 17: 46-54. 1:CAS:528:DC%2BC3cXhsF2rsb3L. 10.1093/humupd/dmq034. 20667894 Broer SL, Mol BW, Hendriks D, Broekmans FJ. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009; 91: 705-714. 1:CAS:528:DC%2BD1MXnslWms7Y%3D. 10.1016/j.fertnstert.2007.12.013. 18321493 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. 10.1136/bmj.n71. 33782057. 8005924 Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155: 529-536. 10.7326/0003-4819-155-8-201110180-00009. 22007046 Palhares MB, Martins WP, Romão GS, Ferriani RA, Navarro PA. Combining age, antral follicle count, anti-Müllerian hormone, and follicle-stimulating hormone is more accurate than individual markers in predicting poor ovarian response. J Reprod Med. 2018; 63: 461-466 Tolikas A, Tsakos E, Gerou S, Prapas Y, Loufopoulos A. Anti-Mullerian hormone (AMH) levels in serum and follicular fluid as predictors of ovarian response in stimulated (IVF and ICSI) cycles. Hum Fertil. 2011; 14: 246-253. 1:CAS:528:DC%2BC3MXhsVyltLnK. 10.3109/14647273.2011.608464 Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Prediction of high ovarian response to controlled ovarian hyperstimulation: anti-Müllerian hormone versus small antral follicle count (2–6 mm). J Assist Reprod Genet. 2009; 26: 319-325. 10.1007/s10815-009-9319-5. 19543966. 2729857 Ashrafi M, Hemat M, Arabipoor A, Salman Yazdi R, Bahman-Abadi A, Cheraghi R. Predictive values of anti-müllerian hormone, antral follicle count and ovarian response prediction index (ORPI) for assisted reproductive technology outcomes. J Obstet Gynaecol. 2017; 37: 82-88. 1:CAS:528:DC%2BC28XitFWmu7bE. 10.1080/01443615.2016.1225025. 27976974 Baker VL, Glassner MJ, Doody K, Schnell VL, Gracia C, Shin SS. Validation study of the Access antimüllerian hormone assay for the prediction of poor ovarian response to controlled ovarian stimulation. Fertil Steril. 2021; 116: 575-582. 1:CAS:528:DC%2BB3MXhtFelur3F. 10.1016/j.fertnstert.2021.01.056. 33812650 Baker VL, Gracia C, Glassner MJ, Schnell VL, Doody K, Coddington CC. Multicenter evaluation of the Access AMH antimüllerian hormone assay for the prediction of antral follicle count and poor ovarian response to controlled ovarian stimulation. Fertil Steril. 2018; 110: 506-13.e3. 1:CAS:528:DC%2BC1cXht1ejtL%2FL. 10.1016/j.fertnstert.2018.03.031. 29960708 Bancsi LFJMM, Broekmans FJM, Looman CWN, Habbema JDF, Te Velde ER. Impact of repeated antral follicle counts on the prediction of poor ovarian response in women undergoing in vitro fertilization. Fertil Steril. 2004; 81: 35-41. 10.1016/j.fertnstert.2003.06.011. 14711542 Eldar-Geva T, Ben-Chetrit A, Spitz IM, Rabinowitz R, Markowitz E, Mimoni T. Dynamic assays of inhibin B, anti-Mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod. 2005; 20: 3178-3183. 1:CAS:528:DC%2BD2MXht1Cns77L. 10.1093/humrep/dei203. 16113044 Fabregues F, Gonzalez-Foruria I, Peñarrubia J, Carmona F. Ovarian response is associated with anogenital distance in patients undergoing controlled ovarian stimulation for IVF. Hum Reprod. 2018; 33: 1696-1704. 1:CAS:528:DC%2BC1MXhtlCju7zM. 10.1093/humrep/dey244. 30016431 Fiçicioglu C, Kutlu T, Baglam E, Bakacak Z. Early follicular antimüllerian hormone as an indicator of ovarian reserve. Fertil Steril. 2006; 85: 592-596. 10.1016/j.fertnstert.2005.09.019. 16500324 Fouda F, Rezk AY, Razik MA, El-Shair O, Salim A. Anti-mullerian hormone level is a reliable predictor for cycle cancellation in ICSI. Middle East Fertil Soc J. 2010; 15: 194-199. 10.1016/j.mefs.2010.06.009 Frattarelli JL, Levi AJ, Miller BT, Segars JH. A prospective assessment of the predictive value of basal antral follicles in in vitro fertilization cycles. Fertil Steril. 2003; 80: 350-355. 10.1016/S0015-0282(03)00664-2. 12909498 Gnoth C, Schuring AN, Friol K, Tigges J, Mallmann P, Godehardt E. Relevance of anti-Mullerian hormone measurement in a routine IVF program. Hum Reprod. 2008; 23: 1359-1365. 1:CAS:528:DC%2BD1cXmvFSjuro%3D. 10.1093/humrep/den108. 18387961 Heidar Z, Bakhtiyari M, Mirzamoradi M, Zadehmodarres S, Sarfjoo FS, Mansournia MA. Prediction of different ovarian responses using anti-Müllerian hormone following a long agonist treatment protocol for IVF. J Endocrinol Invest. 2015; 38: 1007-1015. 1:CAS:528:DC%2BC28XhvFSjurY%3D. 10.1007/s40618-015-0297-4. 25981081 Islam Y, Aboulghar MM, Alebrashy AED, Abdel-Aziz O. The value of different ovarian reserve tests in the prediction of ovarian response in patients with unexplained infertility. Middle East Fertil Soc J. 2016; 21: 69-74. 10.1016/j.mefs.2015.08.005 Izhar R, Husain S, Tahir MA, Kausar M, Sana T, Ghalib F. Antral follicle count and anti-müllerian hormone level as predictors of ovarian hyperstimulation syndrome in women with polycystic ovarian syndrome undergoing controlled ovarian stimulation. J Ultrason. 2021; 21: e200-e205. 10.15557/JoU.2021.0032. 34540273. 8439128 Järvelä IY, Sladkevicius P, Kelly S, Ojha K, Campbell S, Nargund G. Quantification of ovarian power Doppler signal with three-dimensional ultrasonography to predict response during in vitro fertilization. Obstet Gynecol. 2003; 102: 816-822. 14551013 Jayaprakasan K, Campbell B, Hopkisson J, Johnson I, Raine-Fenning N. A prospective, comparative analysis of anti-Müllerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation. Fertil Steril. 2010; 93: 855-864. 1:CAS:528:DC%2BC3cXjsFemsr8%3D. 10.1016/j.fertnstert.2008.10.042. 19046583 Jayaprakasan K, Hilwah N, Kendall NR, Hopkisson JF, Campbell BK, Johnson IR. Does 3D ultrasound offer any advantage in the pretreatment assessment of ovarian reserve and prediction of outcome after assisted reproduction treatment?. Hum Reprod. 2007; 22: 1932-1941. 1:STN:280:DC%2BD2szms1WjtA%3D%3D. 10.1093/humrep/dem104. 17493981 Knez J, Kovačič B, Medved M, Vlaisavljević V. What is the value of anti-Müllerian hormone in predicting the response to ovarian stimulation with GnRH agonist and antagonist protocols?. Reprod Biol Endocrinol. 2015; 13: 58. 10.1186/s12958-015-0049-5. 26059906. 4470079 Kunt C, Ozaksit G, Keskin Kurt R, Cakir Gungor AN, Kanat-Pektas M, Kilic S. Anti-Mullerian hormone is a better marker than inhibin B, follicle stimulating hormone, estradiol or antral follicle count in predicting the outcome of in vitro fertilization. Arch Gynecol Obstet. 2011; 283: 1415-1421. 1:CAS:528:DC%2BC3MXlvFOis78%3D. 10.1007/s00404-011-1889-7. 21562964 La Marca A, Giulini S, Tirelli A, Bertucci E, Marsella T, Xella S. Anti-Müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum Reprod (Oxford, England). 2007; 22: 766-771. 10.1093/humrep/del421 Lee RK, Wu FS, Lin MH, Lin SY, Hwu YM. The predictability of serum anti-Müllerian level in IVF/ICSI outcomes for patients of advanced reproductive age. Reprod Biol Endocrinol. 2011; 9: 115. 1:CAS:528:DC%2BC3MXhtFGktrzO. 10.1186/1477-7827-9-115. 21843363. 3175456 Lee TH, Liu CH, Huang CC, Wu YL, Shih YT, Ho HN. Serum anti-müllerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod. 2008; 23: 160-167. 1:CAS:528:DC%2BD2sXhsVWgsbzI. 10.1093/humrep/dem254. 18000172 Li R, Gong F, Zhu Y, Fang W, Yang J, Liu J. Anti-Müllerian hormone for prediction of ovarian response in Chinese infertile women undergoing IVF/ICSI cycles: a prospective, multi-centre, observational study. Reprod Biomed Online. 2016; 33: 506-512. 1:CAS:528:DC%2BC28Xht1ymsrrI. 10.1016/j.rbmo.2016.07.003. 27502068 Martínez F, Clua E, Carreras O, Tur R, Rodríguez I, Barri PN. Is AMH useful to reduce low ovarian response to GnRH antagonist protocol in oocyte donors?. Gynecol Endocrinol. 2013; 29: 754-757. 10.3109/09513590.2013.801443. 23758138 McIlveen M, Skull JD, Ledger WL. Evaluation of the utility of multiple endocrine and ultrasound measures of ovarian reserve in the prediction of cycle cancellation in a high-risk IVF population. Hum Reprod. 2007; 22: 778-785. 1:STN:280:DC%2BD2s7gs1Kjtw%3D%3D. 10.1093/humrep/del435. 17114197 Muttukrishna S, Suharjono H, McGarrigle H, Sathanandan M. Inhibin B and anti-Mullerian hormone: markers of ovarian response in IVF/ICSI patients?. BJOG. 2004; 111: 1248-53. 1:CAS:528:DC%2BD2cXhtVKis7bJ. 10.1111/j.1471-0528.2004.00452.x. 15521870 Nakhuda GS, Sauer MV, Wang JG, Ferin M, Lobo RA. Müllerian inhibiting substance is an accurate marker of ovarian response in women of advanced reproductive age undergoing IVF. Reprod Biomed Online. 2007; 14: 450-454. 1:CAS:528:DC%2BD2sXltFOjtr8%3D. 10.1016/S1472-6483(10)60892-9. 17425826 Nardo LG, Gelbaya TA, Wilkinson H, Roberts SA, Yates A, Pemberton P. Circulating basal anti-Müllerian hormone levels as predictor of ovarian response in women undergoing ovarian stimulation for in vitro fertilization. Fertil Steril. 2009; 92: 1586-1593. 1:CAS:528:DC%2BC3cXlslKrsg%3D%3D. 10.1016/j.fertnstert.2008.08.127. 18930213 Nelson SM, Yates RW, Fleming R. Serum anti-Müllerian hormone and FSH: Prediction of live birth and extremes of response in stimulated cycles - Implications for individualization of therapy. Hum Reprod. 2007; 22: 2414-2421. 1:CAS:528:DC%2BD2sXpt1CntbY%3D. 10.1093/humrep/dem204. 17636277 Neves AR, Blockeel C, Griesinger G, Garcia-Velasco JA, Marca A, Rodriguez I. The performance of the Elecsys® anti-Müllerian hormone assay in predicting extremes of ovarian response to corifollitropin alfa. Reprod Biomed Online. 2020; 41: 29-36. 1:CAS:528:DC%2BB3cXpsFCiuro%3D. 10.1016/j.rbmo.2020.03.023. 32466992 Peñarrubia J, Fábregues F, Manau D, Creus M, Casals G, Casamitjana R. Basal and stimulation day 5 anti-Müllerian hormone serum concentrations as predictors of ovarian response and pregnancy in assisted reproductive technology cycles stimulated with gonadotropin-releasing hormone agonist-gonadotropin treatment. Hum Reprod. 2005; 20: 915-922. 10.1093/humrep/deh718. 15665015 Sene AA, Ashrafi M, Alaghmand-Fard N, Mohammadi N, Alisaraie MM, Alizadeh A. Anti-müllerian hormone predictive levels to determine the likelihood of ovarian hyper-response in infertile women with polycystic ovarian morphology. Int J Fertil Ster. 2021; 15: 115-122. 1:CAS:528:DC%2BB3MXhtFCiurvF Singh N, Malik E, Banerjee A, Chosdol K, Sreenivas V, Mittal S. "anti-mullerian hormone: marker for ovarian response in controlled ovarian stimulation for IVF patients": a first pilot study in the Indian population. J Obstet Gynecol India. 2013; 63: 268-272. 10.1007/s13224-012-0318-6 Soldevila PNB, Carreras O, Tur R, Coroleu B, Barri PN. Sonographic assessment of ovarian reserve. Its correlation with outcome of in vitro fertilization cycles. Gynecol Endocrinol. 2007; 23: 206-12. 10.1080/09513590701253776. 17505940 Tan X, Xi H, Yang J, Wang W. Development and validation of prediction model for high ovarian response in in vitro fertilization-embryo transfer: a longitudinal study. Comput Math Methods Med. 2021; 2021: 7822119. 10.1155/2021/7822119. 34697556. 8541868 Tremellen KP, Kolo M, Gilmore A, Lekamge DN. Anti-mullerian hormone as a marker of ovarian reserve. Aust N Z J Obstet Gynaecol. 2005; 45: 20-24. 10.1111/j.1479-828X.2005.00332.x. 15730360 Van Rooij IAJ, Broekmans FJM, Te Velde ER, Fauser BCJM, Bancsi LFJMM, De Jong FH. Serum anti-Müllerian hormone levels: a novel measure of ovarian reserve. Hum Reprod. 2002; 17: 3065-71. 10.1093/humrep/17.12.3065. 12456604 Yong PY, Baird DT, Thong KJ, McNeilly AS, Anderson RA. Prospective analysis of the relationships between the ovarian follicle cohort and basal FSH concentration, the inhibin response to exogenous FSH and ovarian follicle number at different stages of the normal menstrual cycle and after pituitary down-regulation. Hum Reprod. 2003; 18: 35-44. 1:CAS:528:DC%2BD3sXms1GitQ%3D%3D. 10.1093/humrep/deg019. 12525438 Kamel HM, Amin AH, Al-Adawy AR. Basal serum anti-Mullerian hormone (AMH) is a promising test in prediction of occurrence of pregnancy rate in infertile women undergoing ICSI cycles. Clin Lab. 2014; 60; 10: 1717-1723. 1:CAS:528:DC%2BC2cXhvFyitLrF. 25651719 Polyzos NP, Tournaye H, Guzman L, Camus M, Nelson SM. Predictors of ovarian response in women treated with corifollitropin alfa for in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2013; 100: 430-437. 1:CAS:528:DC%2BC3sXnvVOiu7o%3D. 10.1016/j.fertnstert.2013.04.029. 23668992 Laqqan MM, Yassin MM. Predictive factors of ovarian response to GnRH antagonist stimulation protocol: AMH and age are potential candidates. Middle East Fertil Soc J. 2021; 26; 1: 1-1. 10.1186/s43043-021-00062-7 Honnma H, Baba T, Sasaki M, Hashiba Y, Oguri H, Fukunaga T. Different ovarian response by age in an anti-Müllerian hormone-matched group undergoing in vitro fertilization. J Assist Reprod Genet. 2012; 29: 117-125. 10.1007/s10815-011-9675-9. 22086616 He Y, Xia R, Chen X, Ye D, Tang Y, Li P. Estimation of ovarian response using multiple predictors of ovarian reserve in women undergoing in vitro fertilization-embryo transfer. Nan Fang Yi Ke Da Xue Xue Bao. 2013; 33: 216-20. 1:CAS:528:DC%2BC3sXhvF2qtbjM. 23443775 Verberg MF, Eijkemans MJ, Heijnen EM, Broekmans FJ, de Klerk C, Fauser BC. Why do couples drop-out from IVF treatment? A prospective cohort study. Hum Reprod. 2008; 23: 2050-2055. 1:STN:280:DC%2BD1crisFahtw%3D%3D. 10.1093/humrep/den219. 18544578 Fleming R, Seifer DB, Frattarelli JL, Ruman J. Assessing ovarian response: antral follicle count versus anti-Müllerian hormone. Reprod Biomed Online. 2015; 31: 486-496. 1:CAS:528:DC%2BC2MXhtFehtb%2FM. 10.1016/j.rbmo.2015.06.015. 26283017

By Yang Liu; Zhengmei Pan; Yanzhi Wu; Jiamei Song and Jingsi Chen

Reported by Author; Author; Author; Author; Author

Titel:
Comparison of anti-Müllerian hormone and antral follicle count in the prediction of ovarian response: a systematic review and meta-analysis
Autor/in / Beteiligte Person: Liu, Yang ; Pan, Zhengmei ; Wu, Yanzhi ; Song, Jiamei ; Chen, Jingsi
Link:
Zeitschrift: Journal of Ovarian Research, Jg. 16 (2023), Heft 1, S. 1-11
Veröffentlichung: BMC, 2023
Medientyp: academicJournal
ISSN: 1757-2215 (print)
DOI: 10.1186/s13048-023-01202-5
Schlagwort:
  • Anti-Müllerian hormone
  • Antral follicle count
  • Ovarian response
  • In vitro fertilization
  • Meta-analysis
  • Gynecology and obstetrics
  • RG1-991
Sonstiges:
  • Nachgewiesen in: Directory of Open Access Journals
  • Sprachen: English
  • Collection: LCC:Gynecology and obstetrics
  • Document Type: article
  • File Description: electronic resource
  • Language: English

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -