Zum Hauptinhalt springen

ELECTROLYTE MEMBRANE FOR SOLID OXIDE FUEL CELLS, METHOD FOR MANUFACTURING THE SAME, AND FUEL CELL USING THE SAME

Chang, Ik Whang ; Jee, Young Seok ; et al.
2012
Online Patent

Titel:
ELECTROLYTE MEMBRANE FOR SOLID OXIDE FUEL CELLS, METHOD FOR MANUFACTURING THE SAME, AND FUEL CELL USING THE SAME
Autor/in / Beteiligte Person: Chang, Ik Whang ; Jee, Young Seok ; Ji, Sang Hoon ; Lee, Yoon Ho ; Cha, Suk-Won ; Lee, Ju-Hyung
Link:
Veröffentlichung: 2012
Medientyp: Patent
Sonstiges:
  • Nachgewiesen in: USPTO Patent Applications
  • Sprachen: English
  • Document Number: 20120321990
  • Publication Date: December 20, 2012
  • Appl. No: 13/215378
  • Application Filed: August 23, 2011
  • Assignees: XFC INC. (Seoul, KR), SNU R&DB FOUNDATION (Seoul, KR)
  • Claim: 1. An electrolyte membrane for solid oxide fuel cells, which comprises two or more deposited layers, wherein each of the deposited layers independently has an average crystal grain size of 5-100 nm and the deposited layers are different from each other in the average crystal grain size.
  • Claim: 2. The electrolyte membrane for solid oxide fuel cells according to claim 1, wherein a deposited layer adjacent to an anode among the two or more deposited layers has an average crystal grain size of 5-50 nm, a deposited layer adjacent to a cathode among the two or more deposited layers has an average crystal grain size of 50-100 nm, and the average crystal grain size of the deposited layer adjacent to the anode and that of the deposited layer adjacent to the cathode have a difference of 10-95 nm.
  • Claim: 3. The electrolyte membrane for solid oxide fuel cells according to claim 2, wherein the deposited layer adjacent to the anode among the two or more deposited layers has an average crystal grain size of 10-20 nm, the deposited layer adjacent to the cathode among the two or more deposited layers has an average crystal grain size of 50-100 nm, and the average crystal grain size of the deposited layer adjacent to the anode and that of the deposited layer adjacent to the cathode have a difference of 20-50 nm.
  • Claim: 4. The electrolyte membrane for solid oxide fuel cells according to claim 3, wherein the deposited layer adjacent to the anode among the two or more deposited layers has a dense thin film structure, and the deposited layer adjacent to the cathode among the two or more deposited layers has a columnar thin film structure.
  • Claim: 5. The electrolyte membrane for solid oxide fuel cells according to claim 1, wherein the deposited layer adjacent to the anode among the two or more deposited layers is deposited by using a pulsed laser deposition process under the conditions of 500-700° C., O2 pressure of 50-100 mTorr, laser power of 150-250 mJ, laser frequency of 3-8 Hz, and deposition time of 100-200 minutes; and the deposited layer adjacent to the cathode among the two or more deposited layers is deposited under the conditions of 500-700° C., O2 pressure of 20-40 mTorr, laser power of 150-250 mJ, laser frequency of 3-8 Hz and deposition time of 20-40 minutes.
  • Claim: 6. The electrolyte membrane for solid oxide fuel cells according to claim 5, wherein the two or more deposited layers comprise at least one deposited layer selected from the group consisting of a deposited layer of oxygen ion conductive solid oxides, a deposited layer of proton conductive solid oxide, and a deposited layer of oxygen and proton conductive solid oxide.
  • Claim: 7. The electrolyte membrane for solid oxide fuel cells according to claim 6, wherein the oxygen ion conductive solid oxide comprises at least one selected from the group consisting of: yttrium- or scandium-doped zirconia; ceria doped with at least one selected from the groups consisting of gadolinium, samarium, lanthanum, ytterbium and neodymium; and lanthanum gallate doped with strontium or magnesium
  • Claim: 8. The electrolyte membrane for solid oxide fuel cells according to claim 7, wherein the proton conductive solid oxide comprises at least one selected from the parent perovskite group consisting of trivalent element-doped barium zirconate, barium cerate, strontium cerate and strontium zirconate.
  • Claim: 9. The electrolyte membrane for solid oxide fuel cells according to claim 8, wherein the oxygen and proton conductive solid oxide comprises at least one selected from the group consisting of trivalent element-doped BaZrO3, BaCeO3, SrZrO3 and SrCeO3, and Ba2In2O5 doped with at least one cationic element selected from vanadium, niobium, tantalum, molybdenum and tungsten.
  • Claim: 10. The electrolyte membrane for solid oxide fuel cells according to claim 9, wherein the deposited layer adjacent to the anode and the deposited layer adjacent to the cathode among the two or more deposited layers have a thickness of 0.08-8 μm and 0.02-2 μm, respectively, and the two or more deposited layers have a total thickness of 0.1-10 μm.
  • Claim: 11. The electrolyte membrane for solid oxide fuel cells according to claim 10, wherein the two or more deposited layers are deposited via a pulse layer deposition, sputter deposition or physical vacuum vapor deposition process.
  • Claim: 12. The electrolyte membrane for solid oxide fuel cells according to claim 1, which further comprises an insulation layer, wherein the insulation layer is formed on one surface or both surfaces of the two or more deposited layers as a conformal layer, and has an average crystal grain size between 5 nm and 30 nm or less.
  • Claim: 13. The electrolyte membrane for solid oxide fuel cells according to claim 12, wherein the insulation layer is formed of at least one material selected from the group consisting of aluminum oxide, aluminosilicate and titanium dioxide.
  • Current U.S. Class: 429/482
  • Current International Class: 01; 82

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -