Zum Hauptinhalt springen

Bluetongue virus recombinant vaccines and uses thereof

Audonnet, Jean-Christophe ; Guo, Xuan ; et al.
2016
Online Patent

Titel:
Bluetongue virus recombinant vaccines and uses thereof
Autor/in / Beteiligte Person: Audonnet, Jean-Christophe ; Guo, Xuan ; Cox, Kevin
Link:
Veröffentlichung: 2016
Medientyp: Patent
Sonstiges:
  • Nachgewiesen in: USPTO Patent Grants
  • Sprachen: English
  • Patent Number: 9,345,759
  • Publication Date: May 24, 2016
  • Appl. No: 13/046317
  • Application Filed: March 11, 2011
  • Assignees: MERIAL, INC. (Duluth, GA, US)
  • Claim: 1. A composition comprising a BTV (Bluetongue Virus) VP2 antigen and a pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicles; wherein a nucleic acid sequence encoding the BTV VP2 antigen is expressed in a duckweed plant and said encoded antigen is localized to the cytoplasm of the duckweed plant; wherein said encoded antigen is non-glycosylated, and partially purified; wherein SEQ ID NO: 26 is fused immediately upstream of the nucleic acid sequence encoding the BTV VP2 antigen; and wherein the BTV VP2 antigen has at least 95% sequence identity to the sequence as set forth in SEQ ID NO: 4, and provides a protective immunogenic response in an animal against BTV infection.
  • Claim: 2. The composition of claim 1 , wherein the composition further comprises a BTV VP5 antigen having at least 95% identity to the sequence as set forth in SEQ ID NO: 10.
  • Claim: 3. The composition of claim 1 , wherein the BTV antigen is substantially purified.
  • Claim: 4. The composition of claim 1 , wherein the pharmaceutically or veterinarily acceptable carrier, adjuvant, excipient, or vehicle is a crystalline salt or an oil-in-water emulsion.
  • Claim: 5. A method of vaccinating a host susceptible to BTV comprising at least one administration of the composition according to claim 1 .
  • Claim: 6. The method of claim 5 comprising a prime-boost administration protocol.
  • Claim: 7. The method of claim 6 , wherein said prime-boost administration comprises a prime-administration of the composition of claim 1 , and a boost-administration of a vaccine or composition comprising a recombinant viral vector that contains and expresses the BTV antigen in vivo, or an inactivated viral vaccine comprising the BTV antigen, or a DNA plasmid vaccine or composition that contains or expresses the BTV antigen.
  • Claim: 8. The method of claim 6 , wherein the prime-boost administration comprises a prime-administration of a vaccine or composition comprising a recombinant viral vector that contains and expresses the BTV antigen in vivo, or an inactivated viral vaccine comprising the BTV, or a DNA plasmid vaccine or composition that contains or expresses the BTV antigen, and a boost-administration of the composition of claim 1 .
  • Claim: 9. The method of claim 6 , wherein the prime-boost administration comprises a prime-administration of the composition of claim 1 , and a boost-administration of the composition of claim 1 .
  • Claim: 10. The method of claim 5 , wherein the host is ovine, bovine, or caprine.
  • Claim: 11. A plasmid comprising a DNA fragment, wherein said fragment comprises SEQ ID NO: 26 fused immediately upstream of the sequence as set forth in SEQ ID NO: 3, wherein the plasmid is for duckweed plant transformation, wherein the expression of the DNA fragment in the duckweed plant produces a BTV VP2 antigen which provides a protective immunogenic response in an animal against BTV infection, and wherein said antigen is cytoplasmically localized and non-glycosylated.
  • Claim: 12. A stably transformed duckweed plant or culture transformed with a nucleic acid sequence encoding a BTV antigen, wherein SEQ ID NO: 26 is fused immediately upstream of the nucleic acid sequence encoding the BTV antigen, wherein the BTV antigen is BTV VP2 having at least 95% sequence identity to the sequence as set forth in SEQ ID NO: 4, wherein the BTV VP2 antigen is expressed and localized to the cytoplasm of the duckweed plant or culture and non-glycosylated; and wherein said antigen provides a protective immunogenic response in an animal against BTV infection.
  • Claim: 13. The duckweed plant or culture of claim 12 comprising the plasmid of claim 11 .
  • Claim: 14. The composition of claim 2 , wherein the BTV VP2 has the sequence as set forth in SEQ ID NO:4, and the BTV VP5 has the sequence as set forth in SEQ ID NO:10.
  • Claim: 15. The plasmid of claim 11 , wherein the plasmid comprises an RbcS leader sequence.
  • Claim: 16. The plasmid of claim 11 , wherein the plasmid comprises an ADH1 intron.
  • Patent References Cited: 5690938 November 1997 Ermak et al. ; 5833995 November 1998 Roy et al. ; 2007/0280960 December 2007 Audonnet et al.
  • Other References: Athmaram et al (Vaccine, 24, p. 2994-3000, 2006). cited by examiner ; Sallieau et al (see GenBank accession ACJ65032.1). cited by examiner ; Rybicki (Drug Discovery Today, 14(1/2), p. 16-24, Jan. 2009). cited by examiner ; Walker et al (Plant Cell Rep, 24, p. 629-641, 2005). cited by examiner ; Stoger et al (Current Opinion in Biotechnology, 16(2), pp. 167-173, 2005). cited by examiner ; Lobato (Veterinary Immunology and Immunopathology, 59, pp. 293-309, 1997). cited by examiner ; Athmaram, TN, et al., (2006) “Integration and expression of bluetongue VP2 gene in somatic embryos of peanut through particle bombardment method”, Vaccine 24: 2994-3000. cited by applicant ; Spreull, J. (1905). “Malarial catarrhal fever (bluetongue) of sheep in South Africa.” J. Comp. Path.. Ther. 18: 321-337. cited by applicant ; Wilson, WC., et al., (2000). “Molecular Evolution of Orbiviruses.” Proc USAHA 104: 169-180. cited by applicant ; Bonneau, KR., et al. (2001). “Occurrence of genetic drift and founder effect during quasispecies evolution of the VP2 and NS3/NS3A genes of bluetongue virus upon passage between sheep, cattle, and Culicoides sonorensis.” J Virol 75(17): 8298-305. cited by applicant ; Anderson, G. A., J. L. Stott, et al. (1985). “Subclinical and clinical bluetongue disease in cattle: clinical, pathological and pathogenic considerations.” Prog Clin Biol Res 178: 103-7. cited by applicant ; MacLachlan, NJ. (1994). “The pathogenesis and immunology of bluetongue virus infection of ruminants.” Comp Immunol Microbiol Infect Dis 17(3-4): 197-206. cited by applicant ; White, DM., et al. (2005). “Studies on overwintering of bluetongue viruses in insects.” J Gen Virol 86(Pt 2): 453-62. cited by applicant ; Roy, P. (1996). “Orbivirus structure and assembly.” Virology 216(1): 1-11. cited by applicant ; Verwoerd, DW., et al. (1972). “Structure of the bluetongue virus capsid.” J Virol 10(4): 783-94. cited by applicant ; Hassan, SS., et al., (1999). “Expression and functional characterization of bluetongue virus VP2 protein: role in cell entry.” J Virol 73(12): 9832-42. cited by applicant ; Huismans, H. et al., (1981). “Identification of the serotype-specific and group-specific antigens of bluetongue virus.” Onderstepoort J Vet Res 48(2): 51-8. cited by applicant ; De Mattos, CA., et al. (1994). “Heterogeneity of the L2 gene of field isolates of bluetongue virus serotype 17 from the San Joaquin Valley of California.” Virus Res 31(1): 67-87. cited by applicant ; Demaula, CD., et al. (2000). “Changes in the outer capsid proteins of bluetongue virus serotype ten that abrogate neutralization by monoclonal antibodies.” Virus Res 67(1): 59-66. cited by applicant ; Roy, P., et al. (1990). “Recombinant virus vaccine for bluetongue disease in sheep.” J Virol 64(5): 1998-2003. cited by applicant ; Huismans, H., et al. (1987). “Isolation of a capsid protein of bluetongue virus that induces a protective immune response in sheep.” Virology 157(1): 172-9. cited by applicant ; Andrew, M., et al. (1995). “Antigen specificity of the ovine cytotoxic T lymphocyte response to bluetongue virus.” Vet Immunol Immunopathol 47(3-4): 311-22. cited by applicant ; Lobato, ZI.,et al. (1997). “Antibody responses and protective immunity to recombinant vaccinia virus-expressed bluetongue virus antigens.” Vet Immunol Immunopathol 59(3-4): 293-309. cited by applicant ; Chargelegue et al., “Transgenic Plants for Vaccine Production: Expectations and Limitations”, Trends in Plant Science 2001, 6, 495-496. cited by applicant ; Schillberg et al., “Opportunities for Recombinant Antigen and Antibody Expression in Transgenic Plants—Technology Assessment”, Vaccine 2005, 23, 1764-1769. cited by applicant ; Arntzen et al., “Plant-derived Vaccines and Antibodies; Potential and Limitations”, Vaccine 2005, 23, 1753-1756. cited by applicant ; Koprowski, “Vaccines and Sera Through Plant biotechnology”, Vaccine 2005, 23, 1757-1763. cited by applicant ; MacLachlan, NJ., et al., (2004). “Bluetongue: Prodeedings of the Third International Symposium.”, Vet Italiana. 40: 1-730. cited by applicant
  • Assistant Examiner: Uyeno, Stephen
  • Primary Examiner: Fox, David T
  • Attorney, Agent or Firm: Jarecki-Black, Judy ; Chen, Ruoyang ; Merial, Inc.

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -