Zum Hauptinhalt springen

Applications of back-end-of-line (BEOL) capacitors in compute-in-memory (CIM) circuits

Corporation, Intel
2021
Online Patent

Titel:
Applications of back-end-of-line (BEOL) capacitors in compute-in-memory (CIM) circuits
Autor/in / Beteiligte Person: Corporation, Intel
Link:
Veröffentlichung: 2021
Medientyp: Patent
Sonstiges:
  • Nachgewiesen in: USPTO Patent Grants
  • Sprachen: English
  • Patent Number: 11138,499
  • Publication Date: October 05, 2021
  • Appl. No: 16/147176
  • Application Filed: September 28, 2018
  • Assignees: Intel Corporation (Santa Clara, CA, US)
  • Claim: 1. An apparatus, comprising: a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip, the CIM circuit comprising a mathematical computation circuit coupled to a memory array, the mathematical computation circuit comprising a switched capacitor circuit, the switched capacitor circuit comprising a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip.
  • Claim: 2. The apparatus of claim 1 wherein the memory array comprises a static random access memory (SRAM) memory array.
  • Claim: 3. The apparatus of claim 2 wherein the BEOL capacitor and thin film transistor are located above the SRAM memory array.
  • Claim: 4. The apparatus of claim 3 wherein the mathematical computation circuit is to accumulate values read from the memory array.
  • Claim: 5. The apparatus of claim 3 wherein the mathematical computation circuit is to multiply and accumulate values read from the memory array.
  • Claim: 6. The apparatus of claim 1 wherein the mathematical computation circuit is to accumulate values read from the memory array.
  • Claim: 7. The apparatus of claim 1 wherein the mathematical computation circuit is to multiply and accumulate values read from the memory array.
  • Claim: 8. An apparatus, comprising: a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip, the CIM circuit comprising a mathematical computation circuit coupled to a memory array, the mathematical computation circuit comprising an accumulation circuit, the accumulation circuit comprising a ferroelectric BEOL capacitor to store a value to be accumulated with other values stored by other ferroelectric BEOL capacitors.
  • Claim: 9. The apparatus of claim 8 wherein the memory array comprises a static random access memory (SRAM) memory array.
  • Claim: 10. The apparatus of claim 9 wherein the ferroelectric BEOL capacitor is located above the SRAM memory array.
  • Claim: 11. The apparatus of claim 10 wherein the mathematical computation circuit is to accumulate values read from the memory array.
  • Claim: 12. The apparatus of claim 10 wherein the mathematical computation circuit is to multiply and accumulate values read from the memory array.
  • Claim: 13. The apparatus of claim 8 wherein the mathematical computation circuit is to accumulate values read from the memory array.
  • Claim: 14. The apparatus of claim 8 wherein the mathematical computation circuit is to multiply and accumulate values read from the memory array.
  • Claim: 15. The apparatus of claim 8 wherein ferroelectric material of the ferroelectric BEOL capacitor comprises grain sizes less than 3 nm and/or is amorphous.
  • Claim: 16. The apparatus of claim 8 wherein the ferroelectric BEOL capacitor comprises material selected from the group consisting of: hafnium zirconium oxide; hafnium oxide; zirconium oxide; hafnium aluminum oxide; hafnium silicon oxide; hafnium zirconium aluminum oxide; hafnium zirconium silicon oxide; hafnium yttrium oxide; yttrium zirconium oxide; hafnium yttrium zirconium oxide.
  • Claim: 17. The apparatus of claim 16 wherein the material is doped with yttrium.
  • Claim: 18. The apparatus of claim 8 wherein the CIM circuit further comprises a switched capacitor circuit that comprises a circuit to sense a switch in dipole moment direction of the ferroelectric capacitor, wherein, the sense of the switch is to determine an accumulate value.
  • Claim: 19. The apparatus of claim 18 wherein the circuit is a current sensing circuit.
  • Patent References Cited: 2017/0117041 April 2017 Hamdioui et al. ; 2017/0162105 June 2017 Kim ; 2018/0075339 March 2018 Ma et al. ; 2018/0157970 June 2018 Henry et al.
  • Other References: Ambrogio, S., et al., “Equivalent-Accuracy Accelerated Neural-Network Training Using Analogue Memory,” Nature, vol. 558, Jun. 7, 2018, 22 pages. cited by applicant ; Biswas, A., et al., “A 42pJ/decision 3.12TOPS/W Robust In-Memory Machine Learning Classifier With On-Chip Training,” 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, 2018, pp. 488-490. cited by applicant ; Fick, D., et al., “Analog Computation in Flash Memory for Datacenter-Scale AI Inference in a Small Chip”, 2.05 Mythic Hot Chips, 2018, 28 pages. cited by applicant ; Gonugondla, S.K., et al., “A 42pJ/decision 3.12TOPS/W Robust In-Memory Machine Learning Classifier With On-Chip Training,” 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, 2018, pp. 490-492. cited by applicant ; Henzler, S., “Chapter 2, Time-to-Digital Converter Basics”, Springer Series in Advanced Microelectronics 29, 2, Springer Science+Business Media B.V. 2010. cited by applicant ; Mason, A., “Memory Basics”, Michigan State, ECE 410, Chapter 13 Lecture Notes, pp. 13.1-13.34, 2010. cited by applicant ; Solanki, Umang, “How does SRAM work?”, https://www.quora.com/How-does-SRAM-work, Aug. 17, 2017, 2 pages. cited by applicant ; Stone, Harold S. “A Logic-In-Memory Computer”, IEEE Transactions on Computers, Jan. 1970, 6, pages. cited by applicant ; Zhang, J., et al., “In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array,” in IEEE Journal of Solid-State Circuits, vol. 52, No. 4, 10 pages, Apr. 2017. cited by applicant ; International Search Report and Written Opinion for PCT Patent Application No. PCT/US2019/47774, dated Dec. 18, 2019, 9 pages. cited by applicant ; Chang, Mu-Tien, et al., “Technology Comparison for Large Last-Level Caches (L3Cs): Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-Optimized eDRAM”, HPCA 2013. cited by applicant ; Kang, Mingu, et al., “An In-Memory VLSI Architecture for Convolutional Neural Networks”, http://ieee-cas.org/pubs/ietcas, Published Version DOI: 10.1109/JETCAS.2018.2829522, Publication Apr. 23, 2018, IEEE Circuits and Systems Society, 13 pages. cited by applicant ; Kim, Han Joon, “Gain Size Engineering for Ferroelectric Hf0.5Zr0.5O2 Films by an Insertion of AI203 Interlayer”, Applied Physics Letters 105, 192903 (2014), 6 pages. cited by applicant ; Lun, Sang “Ferroelectricity in Nanocrystalline Hf0.5Zr0.5O2 Thin Films”, Lund University Master Thesis, Nanoelectronics Group, Department of Electrical and Information Technology, LTH, Feb. 26, 2018, 52 pages. cited by applicant ; Materlik, R., et al., “The Origin of Ferroelectricity in Hfxzr1-xO: A computational Investigation and a Surface Energy Model”, Journal of Applied Physics 117, 134109 (2015), 50 pages. cited by applicant ; Meinerzahagen, P., Gain-Cell Embedded DRAMs for Low-Power VLSI, Chapter 2, Gain-Cell eDRAMs (GC-eDRAMs): Review of Basics and Prior Art. cited by applicant ; Park, Min Hyuk,et al., “Evolution of Phase and Ferroelectric Properties of Thin Hf0.5 Zr0.5O2 Films According to the Thickness and Annealing Temperature”, Applied Physics Letters 102, 242905 (2013), 5 pages. cited by applicant ; Pesic, Milan, et al., “A Computational Study of Hafnia Based Ferroelectric Memories: From Ab-initio via Physical Modeling to Circuit Models of Ferroelectric Device”, Journal of computational Electronics, Aug. 2017, 24 pages. cited by applicant ; Schroeder, Uwe, et al., “Ferroelectricity in Doped Hafnium Oxide”, ISA, State College, Conference Paper, May 15, 2014, 41 pages. cited by applicant ; Sunimura, H., et al., “Overview and Future Challenges eDRAM Technologies”, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials, Yokohama, 2006 2 pages. cited by applicant
  • Primary Examiner: Movva, Amar
  • Attorney, Agent or Firm: Compass IP Law PC

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -